
Evaluating Sampling Methods for
Uncooperative Collections

Paul Thomas
Department of Computer Science

Australian National University
Canberra, Australia

paul.thomas@anu.edu.au

David Hawking
CSIRO ICT Centre
Canberra, Australia

david.hawking@acm.org

ABSTRACT
Many server selection methods suitable for distributed infor-
mation retrieval applications rely, in the absence of cooper-
ation, on the availability of unbiased samples of documents
from the constituent collections. We describe a number of
sampling methods which depend only on the normal query-
response mechanism of the applicable search facilities. We
evaluate these methods on a number of collections typical
of a personal metasearch application. Results demonstrate
that biases exist for all methods, particularly toward longer
documents, and that in some cases these biases can be re-
duced but not eliminated by choice of parameters.

We also introduce a new sampling technique, “multiple
queries”, which produces samples of similar quality to the
best current techniques but with significantly reduced cost.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems
and Software—performance evaluation

General Terms
Experimentation, Measurement

Keywords
Distributed information retrieval, random sampling

1. INTRODUCTION
Simultaneous search of documents from several indepen-

dent collections presents challenges. In many cases, it is
not possible to create a single central index: access restric-
tions, privacy concerns, or technical obstacles may mean
the only interface to a collection is through a search engine.
Distributed information retrieval (DIR)1 aims to provide a

1DIR is also referred to as “metasearch” or “federated
search”.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’07, July 23–27, 2007, Amsterdam, The Netherlands.
Copyright 2007 ACM 978-1-59593-597-7/07/0007 ...$5.00.

Figure 1: A personal DIR tool.

unified search service spanning the combined collections of
these independent search engines. Figure 1 illustrates one
application: a personal DIR tool capable of searching all
a user’s digital collections including email, calendars, and
corporate databases.

Besides providing a single entry point to multiple collec-
tions, and therefore enabling greater coverage than any sin-
gle search system, such a tool would have several advan-
tages. It can scale to large sizes with low cost, and using
local search engines to process queries for their own col-
lections allows collection-specific optimisations such as the-
sauri. Further, there may be significant advantages to users
including a need to learn only one search interface, reduced
cognitive load, and a reduced chance of certain errors.

In the most general case, we assume that search engines
do not cooperate with any DIR framework and provide only
the most minimal interface: they simply accept a query and
produce a set of document identifiers as a result. In par-
ticular, they do not make available statistics such as the
number of documents indexed, term frequencies, or weights;
nor do they expose any information on their internal work-
ings. This information is however needed for fundamental
DIR tasks such as estimating overlap between collections [3],
selecting a collection to answer a query [11], and merging
result sets from multiple collections [6], and therefore tech-
niques have been developed for estimating collection statis-
tics based on samples of documents from constituent servers.

These estimation techniques are improved by or explicitly
rely upon random (unbiased) samples. Overlap estimates
[3], as well as the standard capture-recapture [9] and sample-
resample [14] techniques for estimating collection sizes re-
quire random samples as input; biased samples lead to sys-
tematic error in predicting overlap and systematic underesti-
mates of collection size. The multiple capture-recapture and
capture history techniques [13] also assume random samples,
although estimates from these techniques are adjusted to
account for sample quality, as does the random documents
method [4].

Early evidence also suggests that biased samples, and
hence biased term statistics and size estimates, have a neg-
ative impact on standard server selection algorithms includ-
ing CORI [5], ReDDE [14], and KL-divergence [15].

1.1 Random samples
Obtaining a random sample from an uncooperative search

engine is a non-trivial task. With a limited interface, it is
not possible to enumerate documents in the collection or to
retrieve them according to some identifier; therefore we can-
not simply take a uniform sample. Further, characteristics
of the search engine itself which may improve performance
for typical uses are likely to make sampling less convenient.
For example, certain documents may be more likely to be re-
turned since they are considered in some sense more impor-
tant, or more useful; this introduces strong bias. Similarly,
result lists may be arbitarily truncated, or near-duplicates
removed, to save work on the server or to present a more
useful list to a client. Any random sampling technique will
have to work in this environment.

Ideally, for DIR we would like a sampling technique which
produces samples with as little bias as possible; which re-
quires as little run-time or pre-processing resources as pos-
sible; and which works over a wide range of collections and
search engines with as little prior knowledge as possible. In
particular, we do not want to rely on particulars of docu-
ment format such as the availability of hyperlinks.

In this work we consider sampling techniques against these
criteria. A number of candidate techniques have been de-
veloped for sampling from the Web, some of which are more
generally applicable, and we consider the runtime cost and
performance of these. To the best of our knowledge this is
the first statistical evaluation of “random” document sam-
ples from these techniques. We also consider a new method,
“multiple queries”, which provides samples of similar qual-
ity to existing methods with much reduced cost. Finally,
we consider the effects of the parameters available in each
technique.

1.2 Notation
In the discussion which follows we use notation following

that of Bar-Yossef and Gurevich [2]: D is the set of all doc-
uments available through a search engine, d an individual
document from D, and N = |D| the number of documents a
search engine provides access to. x represents the mean of
some value x.

For each query q sent to a search engine, res(q) denotes
the results returned. This result set may be constrained by
a limit k, imposed either by the search engine itself or by
our samplers; if |res(q)| ≥ k we say that q “overflows”, and
if |res(q)| = 0 we say q “underflows”2.

2Bar-Yossef and Gurevich refer to overflow if |res(q)| > k.

2. RELATED WORK
The problem of sampling from an uncooperative collection

is very similar to that of sampling from the Web, and several
algorithms have been introduced for the latter. These are
summarised in Table 1.

2.1 General methods
“General” methods do not rely on link structures between

documents, and are applicable across a wide variety of doc-
ument types.

Single queries
Bharat and Broder [3] introduced a simple technique for
sampling random pages from Web search engines. The tech-
nique does not however rely on any particular characteristic
of the Web or of Web pages and is applicable to a variety
of collections. The algorithm is extremely simple: a single
query is constructed and sent to a search engine, and a sam-
ple document is chosen at random from the set of matches
returned.

The application to Web search engines, which typically
return a small number of results regardless of the number
of possible matches, prevents us from dealing with large re-
sult sets. As a work-around, Bharat and Broder generated
queries which they expected to return between one and 100
documents, although if a query matched more than 100 doc-
uments they used only the top 100 returned. Query terms
came from a lexicon built during an earlier crawl, and queries
were either four-term disjuncts or two-term conjuncts with
terms chosen for their frequency.

(In a later paper [7], Gulli and Signorini used this method
with slight modifications to estimate the size of public search
engines and hence the public Web. Query terms again came
from an earlier crawl, but Gulli and Signorini used single-
term queries in more than 75 languages.)

Although working with an uncontrolled, dynamic corpus
meant Bharat and Broder were not able to investigate the
quality of the sampler, they identified six sources of bias.
Two of these are relevant to the DIR case. “Query bias” is
the bias towards longer, content-rich documents which are
more likely to match the queries used. “Ranking bias” is the
result of search engines ranking documents and a sampler
not seeing those past rank k. By choosing queries with a
smaller number of results, they note that it is possible to
eliminate ranking bias at the expense of increasing query
bias. Query bias has been noted in other work [1, 2] and is
confirmed by our results below.

In our implementation of the single queries sampler, we
are able to eliminate ranking bias by ignoring any queries
that underflow or overflow and only choosing from result
sets where 1 ≤ |res(q)| < k.

Pool-based sampling
Rejection sampling is a Monte Carlo method which can be
used to simulate sampling according to one distribution π
(for example, the uniform distribution) when it is only fea-
sible to draw samples with some other distribution p (such
as that resulting from query or ranking biases). Bar-Yossef

We prefer the formulation here as, without extra informa-
tion from a search engine, it is not generally possible to tell
whether a result set is bounded by k or by the number of
matches. The two definitions are interchangable by incre-
menting or decrementing k.

Queries Docs/ Hyperlink Doc
needed run graph text Parameters

General methods

Single queries Stream 1 — — Docs/query
Pool-based Pool 1 — Needed Docs/query

Random walk on matchP+ — 1 — Needed Seed, docs/query, burn-in period, query space
Multiple queries Stream Any — — Docs/query, queries/sample, docs/sample

Hyperlink methods

pagerank-sample — Any Needed — Seed, walk length
WebWalker — 1+ Needed Needed Seed, walk length

(un)directed-sample — 1+ Needed — Seed, walk length

Table 1: Characteristics of the sampling methods under investigation. “General” methods do not require a
hyperlink graph and are examined in our experiments.

and Gurevich introduced an application of this technique to
the problem of sampling Web pages [2]. The algorithm con-
sists of an inner round of rejection sampling, which chooses
a query according to the size of its result set; and an outer
round, which chooses a document from the result set of this
query.

Pool-based sampling requires as input a “query pool” P,
a set of queries drawn from all possible queries a search en-
gine accepts. Ideally queries in P have high recall (meaning
that taken together, they cover a large proportion of the
documents in D), and simultaneously a low probability of
underflow or overflow. We use P+ to denote the subset of
P which neither underflows nor overflows.

We also use matchP(d) to denote the queries which a
document d matches, from amongst a pool of queries P.
matchP(d) can be calculated from the text of a document
— for example, if P is the set of all 3-gram queries, it suffices
to extract text from d and enumerate all 3-term phrases in
the document.

The inner loop uses rejection sampling to choose a query
q from P+ with a distribution based on |res(q)|. A query is
chosen uniformly from the pool and forwarded to the search
engine; if it neither underflows nor overflows we accept it
with probability |res(q)|/k and return to the outer loop3.

In the outer loop, a candidate document is chosen uni-
formly from res(q). At this point the probability of choos-
ing a document d as a candidate is proportional to the
probability that d matches the query; in other words to
|matchP+(d)|. A second round of rejection sampling there-
fore returns d as a sample with probability 1/|matchP(d)|,
and otherwise iterates selecting another query and docu-
ment. (Note that although documents are presented as can-
didates with a distribution based on |matchP+(d)|, they are
selected as samples based on 1/|matchP(d)|. This intro-
duces an error the size of which depends on the difference
between P and P+, which is hard to determine without
detailed knowledge of how queries and documents are pro-
cessed at the search engine.)

Experiments to characterise possible pools P used text
from a crawl of web pages in the Open Directory Project
(ODP) [10]. Bar-Yossef and Gurevich used a crawl of a sub-

3The original description of the algorithm leaves the pa-

rameters C and φ̂(q), the envelope constant and the unnor-
malised sample distribution, unspecified. In our implemen-
tation we let φ(q) be uniform, use an unnormalised version

φ̂(q) = 1 for all q, and set C = k/φ̂(q) = k.

set of the ODP as a source of terms and considered single
terms, 3-, 5-, and 7-term phrases for recall, underflow, over-
flow, and other properties; 5-term phrases were considered
the best tradeoff in this instance, and we use 5-term phrases
in our initial experiments below.

Random walk on MATCHP+

A further variant on sampling through random walks was in-
troduced at the same time as pool-based sampling [2]. This
variant uses the Metropolis-Hastings algorithm, which car-
ries out a random walk with each step chosen according to
a “proposal function”, and before each step employs an ac-
ceptance/rejection procedure to determine whether or not
the step will be taken. If the proposal function satisfies
certain simple criteria, a walk with the Metropolis-Hastings
algorithm will eventually converge on a desired distribution.
The parameter B, the burn-in period, determines the num-
ber of (possible) steps in the walk: as with other random
walk methods, this can only be set empirically without prior
knowledge of the collection.

Bar-Yossef and Gurevich adapt this algorithm to collec-
tions without a hyperlink structure by defining a graph such
that two documents are joined by an edge iff they both
match at least one query: i.e. an edge exists between two
documents x and y iff matchP+(x) ∩ matchP+(y) 6= ∅.
Given a document d, the sampler then proceeds by choos-
ing a query uniformly from matchP+(d) (which determines
a subset of edges from the current document); choosing a
document d′ uniformly from the results of this query (which
determines an individual edge); and then choosing to follow

the edge and set d← d′ with probability
|matchP+(d)|

|matchP+(d′)|
(which

normalises for the number of queries d′ matches). After B
iterations, the current document is returned as the sample.

Evaluation experiments compared this random walk with
the pool based and single query samplers on a testbed of 2.4
million documents from the ODP. With both the pool based
and random walk samplers, “little or no” bias was seen due
to document size, and no “significant bias” due to the static
document rank used by their search sytem. As with other
methods, to the best of our knowledge no quantitative tests
for bias have been performed.

Unlike other variants on random walks, a random walk
on matchP+ does not require an explicit hyperlink struc-
ture and is appropriate to a wide range of collections. We
therefore include this sampler in our experiments below.

2.2 Hyperlink methods
A further set of random-walk sampling methods assume

documents are linked in a graph, such as a web graph. No-
table among these are the pagerank-sample method of
Henzinger et al. [8], the WebWalker algorithm of Bar-Yossef
et al. [1] and the directed-sample and undirected-sam-
ple methods of Rusmevichientong et al. [12].

These methods are not generally applicable in the DIR
case, since not all constituent corpora will have such a struc-
ture. Many component collections typical of personal DIR,
such as email, databases, calendars and catalogues are not
hyperlinked. Accordingly, we have excluded these methods
from our experiments.

3. MULTIPLE QUERIES
The multiple queries sampler is a straightforward exten-

sion of the single queries sampler. To reduce query bias,
we run several queries with a large cutoff k; we then choose
any number of documents from the union of all result sets.
(Note that if a document is returned in reponse to more than
one query, we record it only once. This has a similar effect
to adjusting for visit frequency in pagerank-sample.) We
choose queries from a pool defined independently of the col-
lection, with as high a recall as possible, and as with other
samplers ignore any which under- or overflow.

The high values of k (10,000 in our initial experiments)
suggest a large amount of network traffic; however since we
do not need to download the text of documents, and can
sample many documents in a single run, this traffic does not
seem excessive. Further, although we rely on search engines
providing large result sets we do not rely on them making
document text available. Experiments varying k and queries
used are described in Section 6.2 below.

4. SAMPLING COST
A desideratum for a working DIR system is that samplers

should require as few resources as possible. The most sig-
nificant resource is communication with the search engines
we are sampling, and in this section we consider the cost for
each document sampled in the number of queries issued and
in the number of documents downloaded and parsed.

The pagerank-sample, WebWalker, and (un)directed-
sample algorithms rely on explicit hyperlinks between doc-
uments and are not applicable to most collections likely to
be used in DIR. In the remainder of this paper we therefore
consider only the single queries, pool based, random walk,
and multiple queries samplers.

For each of the following analyses a first step is to deter-
mine how many queries successfully complete (i.e. neither
underflow nor overflow). Following Bar-Yossef and Gurevich
we refer to the “validity density” of a document, vdensity(d):
this is just |matchP+(d)|/|matchP(d)|, or the proportion
of those queries d matches which return 1 . . . k − 1 results.
Similarly, we use vdensity(P) to represent the proportion
of queries in a pool P which neither underflow nor overflow:
vdensity(P) = |P+|/|P|.

4.1 Single queries
In its original form, the cost of the single queries sampler

is a single query per document sampled for any collection
and any source of queries. In the implementation used here,
we first must find a query which neither underflows nor over-

flows; the number of queries we will issue is geometrically
distributed with p1 = vdensity(P), so we expect to issue
1/vdensity(P) queries per document sampled.

In both implementations, there are no documents down-
loaded or parsed.

4.2 Pool-based sampling
We consider the inner round of rejection sampling (to find

a query) and the outer round (to find a document) seper-
ately.

In the inner round, the number of iterations needed to
first find a valid query and then select it is geometrically

distributed with p1 =
“

|res(q)|/k
”

vdensity(P); so the ex-

pected number of queries issued before one is selected is

Ec =
“

k/|res(q)|
” “

1/vdensity(P)
”

.

In the outer round, having selected a query a document
from the result set is downloaded and considered for the
final sample. The chance of sampling a document after each
iteration is 1/|matchP(d)|, so the number of queries selected
before a document is selected is geometrically distributed
with Es = |matchP(d)|.

The expected number of queries executed per document
sampled is therefore

Eq = Ec × Es

=
“

k/|res(q)|
” “

1/vdensity(P)
”

|matchP(d)|

We also expect to download and parse |matchP(d)| doc-
uments per sample.

4.3 Random walk on MATCHP+

As with the single queries sampler above, the expected
number of queries we must issue before finding one which
neither underflows nor overflows is 1/vdensity(P). After
each such query is found we download and parse a docu-
ment, and we repeat the process B times (recall that B is
the burn-in time of the random walk). We can therefore
expect to need B/vdensity(P) queries and B downloads
per document sampled, although with more knowledge of
the query pool and collection it is possible to collect second
and subsequent documents more cheaply by continuing the
random walk.

Since the cost depends on B, a parameter of our choosing,
we can choose to improve runtime at the expense of the
randomness of our sample.

4.4 Multiple queries
The cost of the multiple queries sampler is determined

by the number of queries per sample sq, the number of
documents per sample sd, and the pool validity density
vdensity(P). Since we need sq queries which neither un-
derflow nor overflow, from which we select sd documents,
we expect (sq/sd) / (1/vdensity(P)) queries per document
sampled and no downloads.

5. EXPERIMENTS
We have carried out a number of experiments to explore

two questions: first, do the sampling techniques described
above provide unbiased samples across a range of collec-
tions? Secondly, what effect do the available parameters
have on performance?

Size (terms)
Collection Docs Range Mean Std dev Topics

calendar 1k 1–20 4 2 Mixed
zsh-list 9k 2–59k 176 179 Narrow

procmail 24k 2–14k 207 215 Narrow
email 25k 1–26k 199 295 Mixed
WSJ 99k 9–10k 462 450 Broad

.GOV 1.2M 0–43k 6803 5720 Broad

Table 2: Summary statistics of collections used in
our experiments.

5.1 Collections
Our six collections, summarised in Table 2, represent a

range of sizes (over three orders of magnitude), data types,
and topic skew which are likely to be characteristic of per-
sonal DIR and personal information management (PIM) ap-
plications.

The “calendar” collection contains 1049 documents (ap-
pointments) from a calendar application, spanning about
two years. Documents are typically sentence fragments, only
a few terms long, and the terms used in each document have
little overlap with others.

The “zsh-list” and “procmail” collections represent the
archives of two public mailing lists, both on narrow techni-
cal topics. “Email” is a third email collection, this time of
documents from a personal email archive with much broader
topics.

“WSJ” (from TREC CD 1) collects several years of con-
tents of the Wall Street Journal, including articles and let-
ters. It covers a broad range of topics, and document length
varies widely.

The largest collection, “.GOV” (from the TREC Web
Track), is a 1.25M page partial crawl of Web hosts in the
.gov top-level domain (US government agencies). As with
the WSJ collection, document size, style, and topics vary
considerably.

5.2 Parameter settings
In the first instance, we have run each sampler with pa-

rameters set as originally described. For the single queries
sampler, samples were taken with k = 100 and with queries
from a 1% subset of terms in each collection. (If all queries
were exhausted in the course of a long run, two- and finally
three-term disjuncts were used.)

The pool-based sampler was run with a limit k = 5, and
a query pool of a 1% subset of 5-grams from each collec-
tion (for .GOV, a 0.1% subset was taken as the collection is
large). The random walk sampler used the same parameters,
although we were able to use a pool of all possible 5-grams
since in this instance queries do not need to be enumerated
in advance.

The multiple queries sampler used single-term queries,
with terms chosen independently of the collection from a list
of common English words. We used 100 queries per sample
and sampled twenty documents at a time with a result limit
k = 10,000.

The estimated cost of each sampler with these settings
is summarised in Table 3. The random walk sampler is
significantly more expensive than others; however this cost
scales with B, the burn-in time. We experiment with lower

Single Pool Random Multiple
queries based walk queries

Collection q d q d q d q d

calendar 1 0 1 1 1000 1000 34 0
zsh-list 1 0 7 2 1123 1000 5 0

procmail 1 0 8 2 1137 1000 6 0
email 1 0 8 2 1173 1000 5 0
WSJ 1 0 25 4 1161 1000 8 0

.GOV 2 0 11 1 2140 1000 23 0

Table 3: Estimated cost in queries (“q”) and docu-
ment downloads (“d”), per document sampled, for
each sampler.

burn-in times in Section 6.2 below. Costs for the pool-based
and multiple queries sampler are similar, although the mul-
tiple queries sampler generally requires fewer interactions
and never requires document text.

5.3 Tests for bias
Two simple tests were used to indicate bias in samples.
“T”, number of times seen If from a collection of

size N we draw i independent samples, each of size n, and
each sample is drawn randomly, then the probability of see-
ing a document t times in the i samples follows a binomial
distribution: Pr(seen t times) =

`

i

t

´

(n

N
)t(N−n

N
)i−t. We used

a χ2 test to compare this expected distribution with ob-
served frequencies from large numbers of samples.

Failure of this test would most likely indicate that some
individual documents are being sampled too frequently and
others too infrequently — in other words that there is a bias
towards some subset of the documents.

“S”, size distribution Test “S” considers one likely
source of bias. Earlier work has suggested that the single
query sampler, in particular, strongly favours longer docu-
ments. This could be due to two factors: a ranking bias, if
search engines promote longer documents, or a query bias,
since longer documents are more likely to contain our chosen
search terms. The first factor is controlled in our samplers,
but we may still expect to see effects of the second.

To investigate, we divided each collection into deciles ac-
cording to document length, and recorded the proportion
of documents sampled from each decile. A random sample
should have documents from all deciles equally represented.
As for test “T”, we use a χ2 test (df = 9) for comparisons.
Failure of this test indicates a bias towards documents of
particular lengths; in practice this tends to be towards longer
documents.

5.4 Exploring parameter settings
Informed by the results of our initial tests, a series of

experiments investigated the effects of the available param-
eters for each sampler. These are described in more detail
in Section 6.2 below.

6. RESULTS
Results showed samplers performed well with only some

collections, and that all were subject to some degree of query
bias.

Altering query pools or other parameters did not provide
improvements.

Single Pool Random Multiple
t Expected queries based walk queries

0 24381 24540 24389 24381 24378
1 586 333 570 586 592
2 7 63 15 7 4
3 27
4 4
5 3
6 1
7 1
8 2

p 0.00 0.01 1.00 0.54

Table 4: Email samples for test “T”. i = 30 samples
of n = 20 documents each where possible; i = 600 and
n = 1 otherwise. N = 24, 974 documents.

Single Pool Random Multiple
queries based walk queries

calendar 0.00 0.00 0.00 0.00
zsh-list 0.00 0.02 0.51 1.00

procmail 0.00 0.34 0.90 1.00
email 0.00 0.01 1.00 0.54
WSJ 0.00 0.90 0.42 0.92

.GOV 0.00 0.00 0.00 0.00

Table 5: χ2 results (p values) for test “T”. Signifi-
cant deviations from randomness (i.e. probable non-
uniform samples) are underlined.

6.1 Tests for bias
Test “T”, number of times seen Table 4 summarises

the number of times each document in the email collection
was returned by each sampler, and the theoretical distri-
bution described in Section 5.3. p is the chance of seeing
a distribution this far from the expected if we had a truly
uniform sample (χ2 test, df = 2 with t ≥ 2 counted as
one category). We use the email collection for illustration;
similar trends were seen with the other collections tested.

In this example, the single queries sampler has returned
fewer documents than we would expect: 434 unique doc-
uments are returned whereas we would expect 593 from a
truly random sample. Further, those documents which are
sampled are returned too frequently: 63 documents are seen
twice (we expect only seven), and two documents are seen
eight times each. Together these observations suggest a bias
towards a subset of the collection. (We examine one form of
this bias below.)

Table 5 summarises test “T” across each collection and
sampler. In every case of test “T” failing, the sampler has
sampled too few documents too frequently, suggesting a bias
towards some part of the collection. This bias is most ex-
treme with the calendar collection, on which every sampler
failed: the random walk sampler returned one document 24
times and the pool based sampler returned seven distinct
documents more than 15 times each.

We surmise the failures on the calendar collection are due
to the unusual combination of document length and docu-
ment language. Since documents are very short, the graph
on matchP+ used by the random walk sampler is much

Largest Smallest

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Single query
Pool based
Random walk
Multiple queries

Figure 2: Email samples by size decile for test “S”.
A uniform sample would have 10% of sampled doc-
uments in each decile.

Single Pool Random Multiple
queries based walk queries

calendar 0.00 0.00 0.00 0.00
zsh-list 0.00 0.00 0.46 0.94

procmail 0.00 0.00 0.41 0.16
email 0.00 0.00 0.00 0.01
WSJ 0.00 0.00 0.00 0.00

.GOV 0.00 0.00 0.00 0.00

Table 6: χ2 results (p values) for test “S”. Signifi-
cant deviations from randomness (i.e. probable non-
uniform samples) are underlined.

sparser and there is less opportunity to move from the ini-
tial document. For other samplers, we would expect to see
strong bias towards the small fraction of documents match-
ing the query pool since the terms used in each document
vary considerably.

Test “S”, size distribution Figure 2 illustrates the
distribution of documents sampled by each algorithm from
the email collection. A truly random sample would include
around 10% from each decile; instead a bias is apparent in all
samplers towards larger documents. Table 6 has χ2 results
(df = 9) for all collections and samplers.

In the great majority of cases, a failed test is due to a
bias towards longer documents. This is likely due to query
bias; a longer document is more likely to match any given
query, and by ignoring overflowing queries the samplers may
be effectively counteracting any length normalisation at the
search engine.

As may be expected, the single queries sampler performs
very poorly on this test, failing with every collection with a
very large bias towards longer documents. The pool based
sampler also fails in all six cases, which we expect is due to

the size of the query pool: a uniform subsample of 1% of
5-grams would cover a small proportion of documents and
these documents would tend to be longer. If this conjecture
is correct, a larger pool (although more difficult to construct)
would result in less bias. We explored this possibility by
varying query pools in experiments described below.

The random walk sampler fails in several cases again with
a bias towards longer documents. It is not clear why this
should be the case, since the sampler explicitly controls for
the number of queries a document matches; however differ-
ences in computing matchP(d) at the search engine and at
our sampler may give rise to a bias of this nature. Since we
must agree with an unknown search engine with each step
of query processing, including tokenisation, stemming and
stopping, and parsing queries, errors of this kind are very
likely and may explain the observed bias.

The larger number of documents considered by the muti-
ple queries sampler provides some improvement on the single
queries sampler, and for the zsh-list and procmail collections
suffices to overcome query bias. In other cases a significant
bias to longer documents remains, although we note this
sampler performs no worse than the random walk sampler
and with significantly lower runtime.

6.2 Exploring parameter settings
The biases described above may be due in part to the par-

ticular parameters chosen for each sampler. For each sam-
pler, we varied the available parameters hoping to generate
improvements.

Single queries The single queries sampler proved par-
ticularly susceptible to query bias. Since we ignore all queries
which overflow, varying k will change the subset of queries
used and may affect the quality of the resulting sample; so
may varying the source of queries.

We ran tests “T” and “S” as above for the single queries
sampler with k = 100, 500, and 10,000; and with queries cho-
sen from a subsample of terms indexed, from a subsample of
5-grams, and from a collection-independent set of common
English words. In each case the sampler performed poorly,
again returning too few unique documents and with a strong
bias towards longer documents. We conclude that the single
queries sampler is unlikely to avoid bias for any combination
of parameters.

Pool based In our initial experiments we observed a
consistent bias in the pool based sampler towards longer doc-
uments, and surmised that this was due to our small query
pool (1% of 5-grams for most collections). With a larger
pool of 10% of 5-grams, results improved for both tests and
most collections, which is consistent with this conjecture.

While a larger pool improves results, we generated pools
by pre-processing the collections used. It is not clear how a
working system might generate pools except from document
text; since any bias in the pool will result in biased samples,
documents for the pool should be returned by an unbiased
sampler we are faced with a difficult bootstrapping problem.

Further experiments varied k, using the original pool of
1% of all indexed 5-grams. We observed improvements over
k = 5 with k = 50, and further improvements with k =
500 across most collections. These samplers however have
significantly increased runtime, as k increases much faster
than |res(q)|.

Random walk The quality of the samples generated
by the random walk sampler seem to depend strongly on B,

the burn-in period of the walk. Our initial experiments used
B = 1000, as originally specified, and followup experiments
used values of B = 100 or 10. With smaller values of B we
saw a marked increase in bias; this bias was more appar-
ent with larger corpora. The choice of seed for the walk is
strongly effected by query bias, so this result can be seen
as a straightforward result of the sampler taking fewer steps
from this initial biased choice. With some knowledge of the
size of the corpus and the connectivity of the matchP graph
it would be possible to choose a minimal useful B, but it is
not clear how this could be derived without prior knowledge.

Multiple queries As for the single queries sampler,
the multiple queries sampler is sensitive to the value of k.
Samples were taken with k set to 10,000, 1000, and 100; in
general, results were somewhat worse with k = 1000 and
deteriorated markedly with k = 100. This is expected: as
k decreases, only queries which are more specific will not
overflow. This leads to a smaller number of documents from
which to take a final sample.

This observation may also explain variation seen with dif-
ferent query sources. With collection-specific query pools
of 1% of terms, the multiple queries sampler showed more
bias. We conclude that for our data — documents of varying
size and format but all in English and most with full sen-
tences — a list of common words is both more convenient
and produces better samples.

7. CONCLUSIONS
Several key methods for DIR rely, explicitly or implic-

itly, on an unbiased sample of documents from constituent
collections. Techniques for generating these samples, given
only a query interface and an otherwise uncooperative search
engine, must contend with biases due to search engine op-
timisations (“ranking bias”) and document content (“query
bias”). It appears possible to eliminate ranking bias but
query bias is persistent across a variety of samplers and col-
lections.

We have described seven samplers. Of these, four are
applicable to document types without hyperlink structures
and were tested across six collections representing a range
of sizes and document types. No sampler performed well
across all collections.

The single queries sampler is very badly effected by query
bias, and consistently prefers longer documents across all
collections tested. The pool based sampler as initially de-
scribed performs poorly, but depends greatly on the choice
of pool — with a larger sample of document text the samples
generated are of higher quality. It is not clear, however, how
a real-world system can generate such a query pool without
prior knowledge of collection contents.

The random walk sampler performs better than most al-
ternatives, but has a much higher cost as measured in inter-
actions with the search engine. It also requires some knowl-
edge of how queries are processed at the search engine; any
errors in assumptions here are reflected in biased samples.
Our multiple queries sampler can produce samples of compa-
rable quality, with fewer interactions and no prior knowledge
of the collection being sampled, but requires search engines
to support large result sets.

Future work is needed in two areas. It remains to de-
velop a sampling technique which is applicable across a range
of collections and which requires little prior knowledge of
collection contents. Further work also remains to quantify

the impact improved samples have on standard methods for
DIR.

8. REFERENCES
[1] Z. Bar-Yossef, A. Berg, S. Chien, J. Fackcharoenphol,

and D. Weitz. Approximating aggregate queries about
web pages via random walks. In Proc. VLDB, 2000.

[2] Z. Bar-Yossef and M. Gurevich. Random sampling
from a search engine’s index. In Proc.WWW, 2006.

[3] K. Bharat and A. Broder. A technique for measuring
the relative size and overlap of public web search
engines. In Proc. 7th WWW, 1998.

[4] A. Broder, M. Fontura, V. Josifivski, R. Kumar,
R. Motwani, S. Nabar, R. Panigrahy, A. Tomkins, and
Y. Xu. Estimating corpus size via queries. In
Proc.CIKM, 2006.

[5] J. P. Callan, Z. Lu, and W. B. Croft. Searching
distributed collections with inference networks. In
Proc. SIGIR, 1995.

[6] N. Craswell, D. Hawking, and P. Thistlewaite.
Merging results from isolated search engines. In
Proc. Australasian Database Conference, 1999.

[7] A. Gulli and A. Signorini. The indexable web is more
than 11.5 billion pages. In Proc. WWW, 2005. Poster.

[8] M. R. Henzinger, A. Heydon, M. Mitzenmacher, and
M. Najork. On near-uniform URL sampling. In
Proc. 9th WWW, 2000.

[9] K.-L. Liu, A. Santoso, C. Yu, W. Meng, and
C. Zhang. Discovering the representative of a search
engine. In Proc.CIKM, 2001. Poster.

[10] Open directory project. http://dmoz.org/.

[11] A. L. Powell, J. C. French, J. Callan, M. Connell, and
C. L. Viles. The impact of database selection on
distributed searching. In Proc. SIGIR, 2000.

[12] P. Rusmevichientong, D. M. Pennock, S. Lawrence,
and C. L. Giles. Methods for sampling pages
uniformly from the world wide web. In Proc. AAAI

Fall Symposium on Using Uncertainty Within

Computation, 2001.

[13] M. Shokouhi, J. Zobel, F. Scholer, and S. M. M.
Tahaghoghi. Capturing collection size for distributed
non-cooperative retrieval. In Proc. SIGIR, 2006.

[14] L. Si and J. Callan. Relevant document distribution
estimation method for resource selection. In
Proc. SIGIR, 2003.

[15] J. Xu and W. B. Croft. Cluster-based language
models for distributed retrieval. In Proc. SIGIR, 1999.

