Automated Discovery of Search Interfaces on the Web

Jared Cope
Australian National University
Jared.Cope@accc.gov.au

Abstract

Web search engines work well for finding crawlable pages, but
not for finding datasets hidden behind Web search forms. We
describe a novel technique for detecting search forms, which
could be the basis for a next-generation distributed search ap-
plication. We use automatic feature generation to describe
candidate forms and C4.5 decision trees to classify them. In
two testbeds, we get an accuracy of more than 85% and a pre-
cision of more than 87%. One of our decision trees is effective
on both testbeds, suggesting that it is a useful general-purpose
tree.

Keywords: World Wide Web, distributed information

retrieval, machine learning

1 Introduction

Many useful datasets on the Web are uncrawlable, so
cannot be searched using conventional search engine
technology. However, using techniques of distributed
information retrieval, such datasets can be located
and accessed automatically.

For example, to include the Oxford English Dictio-
nary (http://www.oed.com/)), a search engine would
have to crawl it: a process of recursively downloading
pages and following their hyperlinks. However, the
OED site is uncrawlable for a number of reasons. It
is a subscription service, so both the engine’s crawler
and end users would need subscriptions. Its pages
are not reachable by following hyperlinks, so are in-
accessible to crawlers (users access pages via a search
form). Finally, the site forbids engines from crawling
its main content areas, via the standard for robots
exclusion (robots.txt).

Even if the pages were public, hyperlinked and
non-excluded, there are problems with comprehen-
sively crawling such a site. It has more than 615164
words, 2436600 quotations, 139900 pronunciations
and 219800 etymologies. If each of these appeared
on one page, a crawl would generate noticeable net-
work traffic and server load. However, in the current
OED site each definition appears on many dynami-
cally generated pages (alone, with etymologies, with
quotations, with pronunciations, with both etymolo-
gies and quotations, and so on). Efficiently crawling
the site would require sophisticated duplicate elimi-
nation methods. Even then, the crawled search might
not be better than the original OED site’s. The OED
search is integrated with the rest of the site and in-
cludes “advanced search” capabilities which would be
hard to emulate in a crawled system.

Copyright (©2003, Australian Computer Society, Inc. This pa-
per appeared at Fourteenth Australasian Database Conference
(ADC2003), Adelaide, Australia. Conferences in Research and
Practice in Information Technology, Vol. 17. Xiaofang Zhou
and Klaus-Dieter Schewe, Ed. Reproduction for academic, not-
for profit purposes permitted provided this text is included.

Nick Craswell and David Hawking
CSIRO Mathematical and Information Sciences
nick.craswell@csiro.au, david.hawking@csiro.au

1 Discovery

Characterisation 3 Selection

results

Figure 1: Five problems of distributed information
retrieval.

The trend on the Web is for more Web sites to
have database back ends, content management sys-
tems, dynamic content, multiple views of the same
content and access restrictions. Each of these factors
makes it more difficult to do a comprehensive crawl,
and makes local search engines relatively more impor-
tant.

Methods for distributed information retrieval can
use whatever search interfaces are available to pro-
vide a unified search experience for the user. Rather
than crawling, they assist users by selecting the right
search interfaces, querying them and presenting their
results in an integrated list.

This paper considers the most basic problem of
distributed information retrieval, in the context of the
Web. It considers how a distributed information re-
trieval system can identify the Web search systems
over which it will operate, with candidates including
the OED search interface and many thousands of oth-
ers.

2 Motivation — Distributed information re-
trieval

Most work in distributed information retrieval has
considered four main problems: characterization, se-
lection, query translation and result merging. Before

http://www.oed.com/

it is queried, the meta search system characterizes the
available search interfaces. Then given a query, it se-
lects a subset of useful search interfaces, queries them
and presents their results to the user.

This paper considers an overlooked problem that
precedes the other four, discovery of search interfaces
(Figure . The meta search system must first dis-
cover a set of search interfaces or be provided with
such a set, before it can proceed with the other four
steps.

Very little work has been done in this area.
Perkowitz, Doorenbos, Etzioni & Weld (1997)
investigated the problem of automatically learning to
interact with information resources on the Internet.
An agent was developed for finding shopping search
forms, based on simple heuristics for discarding those
which are clearly something else. The current pa-
per also classifies forms, but with a more sophisti-
cated approach. Dreilinger & Howe (1997) stud-
ied selection rather than discovery, but their discus-
sion of future work foreshadows our current work.
In particular, they suggest that an agent acting on
auto pilot roaming the Web for new search resources
could lead to a new search paradigm, especially if
the newly discovered resources are incorporated into
a meta searcher.

Once a search interface has been discovered, the
meta searcher may find out what sort of information
is available from the interface. This characterization
problem is illustrated in box 2 of figure

Gravano, Chang, Garcia-Molina & Paepcke
(1997) proposed a standard, STARTS, to aid meta
searchers in choosing the best sources to query. The
protocol requires search interfaces to export informa-
tion about themselves in a standard format such as
the list of words contained in the documents indexed.
However in practice, such a protocol has limitations
on the Web because there is no authority to make sure
that all search interfaces cooperate and implement the
protocol. Presently there are very few STARTS com-
pliant engines. Callan & Connell (2001) presented
query based sampling, which involves querying search
interfaces, downloading some results documents and
building a resource description based on those docu-
ments. Resource descriptions built from probe queries
are more widely available, because they are available
even if search interfaces are not explicitly cooperat-
ing with the meta searcher. Ipeirotis, Gravano &
Mehran (2001) looked at automating the classifica-
tion of search interfaces to build a Yahoo!-like topic
hierarchy. Their system uses carefully chosen probe
queries, to maximize the likelihood of correct classifi-
cation.

For reasons of efficiency, reduced network conges-
tion and possibly improving result quality, it is not
always appropriate to send all queries to all known
search engines. Selection is the problem of selecting
a subset of the search engines for a particular user
query. This problem is illustrated in box 3 of Fig-
ure Manual selection is possible but trivial. The
following studies consider automatic selection.

Callan, Lu & Croft (1995) introduced the
well known CORI server selection function, based on
term occurrence information which is available via
STARTS or probe queries. Other similar functions
are G1OSS (Gravano, Garcia-Molina & Tomasic 1999)
and CVV (Yuwono & Lee 1997). Craswell, Bai-
ley & Hawking (2000) evaluated CORI, vGIOSS
and CVV using resource descriptions generated from
probe queries and found CORI was the best selec-
tion algorithm. Other approaches, for use in varied
environments, include (Hawking & Thistlewaite 1999,
Dreilinger & Howe 1997, Fuhr 1999, Rasolofo, Abbaci
& Savoy 2001).

Query translation is the problem of transforming

the user query into a language that is accepted by the
recipient search engine. This problem is illustrated
in box 4 of Figure Translation issues arise when
different search engines accept different query lan-
guages, for example when processing boolean queries
(Chang, Garcfa-Molina & Paepcke 1996, Chidlovskii
& Borghoff 1998). However, on the Web a string of
keywords is a useful lowest common denominator.

Result merging is the problem of presenting the
combined results of engines in a useful fashion. For
example, in a ranked list with the most relevant doc-
uments ranked near the top. This problem is illus-
trated in box 5 of Figure

Again it is possible to rely on cooperative proto-
cols. With cooperation, ranking can be done uni-
formly across all search engines, for example STARTS
(Gravano et al. 1997) or simply use algorithms which
generate comparable match scores. However, for sim-
ilar reasons of non compliance, cooperative protocols
are not widely used on the Web.

Effective merging can be based on the scores or
ranks assigned by the selected search interfaces, or
on the downloaded contents of the documents in ques-
tion (Lawrence & Giles 1998). Craswell, Hawking
& Thistlewaite (1999) found the document down-
load method to be most effective, particularly when
ranking with a high quality ranking algorithm and a
reference set of collection-wide statistics.

With all this work in distributed information re-
trieval, it is surprising that so little work has been
done on interface discovery, particularly since all the
other work relies on having a set of known interfaces.

3 Interface Detection

A search interface allows a user to search some set
of items without altering them. The user enters a
query, by typing or selecting options, to describe the
item(s) of interest. Results might be a page linking
to items (usual search engine results), a page contain-
ing items (a phone list search) or a single page (“I'm
feeling lucky” in Google). The item(s) found should
somehow match the query.

The vast majority of search interfaces on the Web
are HTML forms. For this reason we ignore other
types of interfaces such as Java GUIs. It is easy to find
large numbers of HTML forms, by crawling the Web
and scanning crawled pages for form tags. There-
fore the detection problem becomes: given an HTML
form, is it a search interface? Note, most forms have a
target URL (action), so although our classification is
in terms of forms we sometimes refer to form targets
(for example Table [3] and Table [10).

Web search interfaces commonly allow users to
search “item sets” such as: Web pages from a gen-
eral crawl or from single site, products for sale, ge-
ographic locations, people, dictionary definitions or
bibliographic entries. Forms which are not search in-
terfaces include discussion group interfaces, mailing
list subscription forms, purchase forms in an online
shop, Web-based email forms and Web site member-
ship forms. In our ANU test set, about 50% of HTML
forms were search interfaces.

When classifying HTML forms into search inter-
faces or non-search interfaces, it is possible to take a
pre-query or a post-query approach. In a pre-query
approach, the form itself and the page containing it
can be analyzed, in order to make the classification.
In post-query classification, one or more queries can
be sent to the system in question, and the resulting
pages used as an indicator. We choose the pre-query
approach for reasons of politeness: it is impolite to
send arbitrary queries to a purchase form or a discus-
sion group simply for the sake of classification.

Form parameters for automatic features

name parameter for an input control
value parameter for an input control
name parameter for a form
distinct word from a form action

Table 1: This table describes four places in a HTML
form from which we generate features.

ANU set Random Web Set
Num features 597 861

Table 2: Number of distinct features generated auto-
matically for both the ANU and random Web training
sets.

The remainder of this section describes methods
we use for search interface detection. We take a ma-
chine learning approach, so we first describe the fea-
tures upon which we base our classification, then the
classification method itself.

3.1 Feature generation

HTML forms contain complex structure that can be
exploited to obtain a rich set of features. This sec-
tion describes one method for automatically gener-
ating features for an HTML form with the goal of
obtaining a representation useful for interface detec-
tion.

Features can automatically be generated for a set
of forms based on values for certain parameters found
in the HTML form markup. The parameters consid-
ered in this paper are in table

The distinct word from a form action refers to a
string of characters that appear between slashes (/)
in the form action (ignoring the colon required by the
HTTP protocol). For example, if the action for a form
is http://search.anu.edu.au/external/| then the
distinct words would be http, search.anu.edu.au and
external.

Features can also be automatically generated
based on the types of form controls present in the
HTML form, for example existence of text controls
and password controls. In addition, features can be
generated from the number of controls, for example
a form having a single text control versus the form
having multiple text controls.

To illustrate the process of automatically generat-
ing features from the HTML code, consider the exam-
ple in figure[2l The top box shows the HTML markup
for a form and the bottom box the resulting features
that are automatically generated.

In this study, automated feature generation was
carried out separately on both the ANU training set
and the random Web training set.

The resulting features from this automated gener-
ation method are too numerous to list individually.
Instead, Table [2| summarizes the total number of au-
tomatically generated features obtained from the two
training sets.

Table [2] suggests that there is more variation in
the structure and content of forms on the Web than
compared with the ANU Web domain. Although the
number of forms in the random Web sample outnum-
ber those in the ANU sample by 18% (260 vs 219),
the number of unique features found from the ran-
dom Web sample outnumber the ANU sample by
44%. Section 7 presents some consequences of this
phenomenon.

search non-search
ANU training set 149 (t:34) 70 (t:43)
ANTU test set 185 (t:24) 199 (t:60)
Random Web training set 150 (t:80) 110 (t:88)
Random Web test set 150 (t:81) 113 (t:92)

Table 3: Training and test sets. Listed are the num-
ber of forms of each type (search and non-search) in
each set. Also listed are the number of unique URLs
targeted by the forms (t:).

3.2 Classification

Having automatically generated a rich set of features,
applying a classification algorithm is a simple matter.
In this case we choose the C4.5 learning algorithm as
our r)nain algorithm, as implemented in Weka (UW
2001).

We chose the algorithm because it is well known,
implemented in multiple places and amenable to the
type of features generated (mostly binary). More im-
portantly, the algorithm produces a classification rule
(tree) which is easily understandable, publishable in
its entirety and implemented in any language using
nested conditionals. Further, tests in Sectionshow
that other classifiers are not significantly more effec-
tive.

4 Testbeds

Collections from two domains are used in this study,
an ANU (Australian National University) and ran-
dom Web set. Collections were manually sampled
by the authors and examples labelled as either a
search interface or non search interface. These col-
lections provide a testing ground for experimenting
with HTML form features and evaluating the classi-
fication success of any features developed.

4.1 ANU collection

A training set of pages was obtained from hosts in the
ANU Web domain (anu.edu.au), using a February
2001 crawl of around 430 000 pages. We identified the
6 500 pages containing HTML forms and sorted them
in URL order. Then, selecting every 30th page, we
identified a training set of 200 pages. For simplicity
of judging and labelling, we then split files containing
multiple forms, giving a training set of 219 forms.

This set was then manually judged by the authors
and each form was labelled as either a search interface
or a non search interface. As a result of this labelling,
there were 149 search interfaces and 70 non search
interfaces in this training set.

A test set of forms was also obtained from the same
crawl. The same procedure in choosing and judging
the forms was applied, except that 300 forms were
picked at random from the crawl (three applications
with a different offset in the list of 6500, to make
sure that the test set is different to the training set,
and choosing every 60th page). After decomposing
multiple forms from a page into their own files and
judging this test set, there were 185 search interfaces
and 199 non search interfaces.

The test set is larger than the training set because
it was gathered later when the judging and labelling
procedure was more refined.

http://search.anu.edu.au/external/

<form name="altavista” method="GET”
action="http://www.altavista.yellowpages.com.au/cgi-bin/query” >
<input type="text” name="q” maxlength="800" value="">
<input type="submit” value="Search” name="submit2” >
<input type="hidden” name="mss” value="simple” >
<input type="hidden” name="pg” value="q" >

<input type="hidden” name="what” value="web” >

<input type="hidden” name="enc” value="is088591” >
<input type="hidden” name="kl” value="XX">

<input type="hidden” name="locale” value="xx">

< /form>

inputType-SingleText
inputType-Submit
inputType-Hidden
inputType-text:Name=q
inputType-submit:Name=submit2
inputType-hidden:Name=mss
inputType-hidden:Name=pg
inputType-hidden:Name=what
inputType-hidden:Name=enc
inputType-hidden:Name=kl
inputType-hidden:Name=locale
inputType-submit:Value=search
inputType-hidden:Value=simple
inputType-hidden:Value=q
inputType-hidden:Value=web
inputType-hidden:Value=iso88591
inputType-hidden:Value=xx
inputType-hidden:Value=xx
FormName:altavista
actionWord:http:
actionWord:www.altavista.yellowpages.com.au
actionWord:cgi-bin
actionWord:query

Figure 2: This figure shows automatic feature generation in action. The top box contains some sample HTML
code for the declaration of a form. The bottom box shows the resulting features derived from the HTML form

content.

Textaea control

Single Text control
Submit control

NON
SEARCH
value = :earch
/ \ SEARCH
Submit control
value = ‘submit quer}

A2

NON SEARCH
SEARCH

Figure 3: Decision tree built from the ANU training
set. The tree was built with 597 available features.

4.2 Random Web collection

A sample set of pages was obtained from the Web and
notably outside the ANU domain. Since a full crawl
of the Web was not available, a different strategy from
above was needed in order to obtain a training and
test set of search interfaces and non-search interfaces.

The Web site http://www.searchengineguide.
com/| is a directory of search interfaces and was used
to obtain a sample set of search interfaces for the
random Web collection. These interfaces are submit-
ted manually by site owners, rather than automati-
cally detectedﬂ Search interfaces were chosen from
a broad range of topics that index news and media,
business, society and science. From this source, a
sample of 150 search interfaces were selected for the
random Web training set and 150 were selected for
the random Web test set. This method is argued to
be random because this Web site acts as a pointer to
a very broad range of actual search interfaces on the
Web. So although the interfaces were obtained from
one specific site, the interfaces actually originate from
all over the Web.

To obtain the set of non search forms, a list of Web
sites linked from http://www.searchengineguide.
com/ and http://www.dmoz.orgﬂ were followed to
their home-pages. The home pages were then ana-
lyzed to find candidate forms. These forms were then
judged and if they were non search interfaces, they
were kept to make up the set of non search interfaces.
With this method, a set of 110 non search interfaces
were eventually found for the training set and 113 for
the test set.

Table [3| compares the training and test sets for
both the ANU and random Web collections.
5 Results

Decision trees are built with the C4.5 learning al-
gorithm using the automatically generated features
from section The implementation of C4.5 used
was obtained from (UW 2001).

predicted predicted
search non search
actual search 146 3
actual non search 2 68

Table 4: Confusion matrix for the ANU training set
using rules derived from Figure [3]

predicted predicted
search non search
actual search 180 5
actual non search 9 190

Table 5: Confusion matrix for the ANU test set using
rules derived from Figure

5.1 Decision tree for the ANU

This section presents the decision tree that was gen-
erated from the ANU training set using automatically
generated features.

Figure [3] shows the decision tree constructed for
the ANU training set with 597 features. The success
of the classification is given in table] Rules gen-
erated from the tree have an accuracy of 98% and a
precision of 99%.

Table [{] shows the classification success when the
rules are applied on the ANU test set. The accuracy
for this classification is 96% and the precision is 95%.

5.2 Decision tree for the random Web

This section presents a decision tree generated from
the random Web training set using automatically gen-
erated features.

Figure [4] shows the decision tree constructed for
the random Web set with 861 automatically generated
features. Table [B] shows the results of this classifica-
tion on the training set with the tree from Figure
Using the rules from the decision tree in figure [4} the
classification has an accuracy of 92% and a precision
of 96%.

Table [l shows the results of this classification on
the test set with the rules generated from the decision

Ipersonal correspondence on 25/09/01 with Robert Clough,
Web-master of Search Engine Guide.

2A directory which acts as a pointer to a broad range of Web
documents.

predicted predicted
search non search
actual search 135 15
actual non search 5 105

Table 6: Confusion matrix for the random Web train-
ing set using rules derived from the tree in Figure

predicted predicted
search non search
actual search 131 19
actual non search 20 93

Table 7: Confusion matrix for the random Web test
set using rules derived from the tree in Figure [4]

http://www.searchengineguide.com/
http://www.searchengineguide.com/
http://www.searchengineguide.com/
http://www.searchengineguide.com/
http://www.dmoz.org

Submit control
value = ‘search’

V \
Password control O
action Word

/ \ SEARCH
‘search’
NON
SEARCH
Text control
name = ‘email’

/ \ SEARCH

Textareacontrol

NON

SEARCH
action word
‘cgi’

NON

SEARCH

N Y

SEARCH

O Submit control Image control
O MultlpleTeXt Single Text
control control

NON SEARCH
SEARCH

N ON SEARCH NON SEARCH
SEARCH SEARCH

Figure 4: Decision tree built from the random Web training set with 861 available features.

Rules generated from automatic features

ANU Domain

Random
Web
Test Set

».93% / 92%

Figure 5: Cross validation across domains. Circles
represent training/test sets and lines represent tests
(dashed for the “random” rule and solid for the ANU
rule). Each line is associated with a pair of percent-
ages, accuracy and precision respectively.

tree in figure [4] The classification has an accuracy of
85% and a precision of 87%.

6 Discussion

For the ANU collection, the classification success was
much better than the random Web collection. The
results are near perfect with an accuracy of 98% and
96% for the training and test sets respectively. The
precision is 99% and 95% for the training and test
sets respectively. Since all these figures are reason-
ably similar, the rules generated by C4.5 from the
automatically generated features appear to be robust
and able to successfully classify new examples from
the ANU domain.

The random Web classification obtained an ac-
curacy of 92% and 85% for the training and test
sets respectively. The precision was 96% and 87%
for the training and test sets respectively. The ac-
curacy and precision obtained in the training set is
slightly higher than the test set. Overall, the success
is lower than the ANU domain but this is believed
to be due to more variation in the example interfaces
found in the Web collection. A substantial number
of the search interfaces found in the ANU collection
are actually the same interface, being the search in-
terface of Panoptic which is the ANU search service.
So naturally, the ANU collection is not as diverse as
the random Web collection. Overall, taking the lower
bound on the classification for the random Web col-
lection, an accuracy of 85% and precision of 87% is
still very good.

7 Further analysis

We now address three further questions. First how
general are the rules in Figure and Figure [y We
test this by cross validation. Second, have our exper-
iments been affected by our choice of the C4.5 classi-
fier? Third, what can be learned from applying the
Figure [rule on a large Web crawl?

7.1 Rule cross validation

This section compares the results of applying rules
generated from the ANU collection onto the random
Web collection and vice versa. Figure |5[shows the re-
sults of this cross validation where some general con-
clusions can be drawn. Firstly it appears that the
ANU rules have limited application to the random
Web collection. The best accuracy for these rules
was 76% on the random Web test collection. This is

Predicted

Predicted search non-search

Actual search C4.5 145 C45 4
SVM 143 SVM 6
Knn 146 Knn 3

Actual C45 4 C4.5 66

non-search SVM 4 SVM 66
Knn 5 Knn 65

Table 8: Other classifiers, ANU.

Predicted

Predicted search non-search

Actual search C4.5 132 C4.5 18
SVM 136 SVM 14

Knn 138 Knon 12

Actual C45 11 C4.5 99
non-search SVM 23 SVM 87
Knn 38 Knn 72

Table 9: Other classifiers, Random.

significantly lower than an accuracy of 85% achieved
with rules generated from the random Web decision
tree. So this would indicate that forms found on the
ANU are not representative of the Web at large and
so the rules generated from this limited exposure to
the Web consequently have limited success at large.

Rules generated with the random Web collection
perform well on the ANU collection. The accuracy
is about 95% and the precision 91%. This is only
marginally worse than using the rules generated with
the ANU decision tree.

With these cross validation experiments, two rule
generation strategies emerge. Firstly, for the best
classification results on a certain domain, training
should be based on local examples, providing very
good performance over that domain. Secondly, when
no local training data is available, training can be
based on general search interfaces, providing a gen-
eral purpose rule (such as Figure [4) with good per-
formance in multiple domains.

7.2 Evaluating other classifiers

We now perform the same experiments with differ-
ent Weka (UW 2001) classification schemes, to ensure
that our results were not dependent on C4.5. In addi-
tion to C4.5 we use support vector machines (SVM)
and K-nearest neighbor (Knn).

Results are in Table [§] and Table [@ None of the
other classifiers provides a significant advantage over
C4.5. Although the true positives are slightly better
in Table[0]for SVM and Knn, this is counteracted by a
higher false positive rate. In this application false pos-
itives are particularly undesirable in that they might
lead to a query being sent to a non-search interface.

Perhaps with tuning, even better performance
could be achieved using these and other classification
schemes. However, for the purposes of this study, the
C4.5 classifier has performed admirably.

7.3 Real-world testing

One of the authors, who had not worked with
the original code, reimplemented the Figure [4] tree
in Perl and ran it over a 2.5 million page crawl
of Australian research institutions (see http://rf.
panopticsearch.com/). After minor adjustment,
the new script produced results which closely matched

http://rf.panopticsearch.com/
http://rf.panopticsearch.com/

Search interface targets

University 2+ forms 14 forms
anu.edu.au 627 2653
qut.edu.au 593 1349
unimelb.edu.au 181 405
cqu.edu.au 176 489
latrobe.edu.au 87 389
monash.edu.au 86 1610
usyd.edu.au 69 515
rmit.edu.au 67 287
unsw.edu.au 65 327
uq.edu.au 55 4905
canberra.edu.au 51 624
uwa.edu.au 48 438
murdoch.edu.au 45 89
uws.edu.au 38 327
curtin.edu.au 28 89
gu.edu.au 26 75
deakin.edu.au 25 107
mq.edu.au 22 82
uow.edu.au 18 100
adelaide.edu.au 16 62
scu.edu.au 14 23
csu.edu.au 13 63
unisa.edu.au 13 40
ntu.edu.au 9 19
flinders.edu.au 7 27
uts.edu.au 7 319
swin.edu.au 6 13
utas.edu.au 5 26
jeu.edu.au 4 79
acu.edu.au 4 9
newcastle.edu.au 4 20
une.edu.au 3 12
ballarat.edu.au 3 7
usq.edu.au 2 16
ecu.edu.au 1 2
bond.edu.au 1 15
usc.edu.au 1 2
vu.edu.au 0 4

Table 10: Target URLs of detected search forms, by
university. For example, of the 19337 detected tar-
gets 2653 were at ANU and 627 of these were targeted
by two or more detected search forms.

those of Tables[6] and [7] The final Perl script, includ-
ing test code for generation of confusion matrices, was
150 lines.

Of the 530763 forms in Research Finder crawl
212569 or 40% were flagged as search forms.

More interesting than forms are form targets.
For example, 2945 search forms are detected, all of
which target the URL http://search.anu.edu.au/
anu (via their form action). Viewed by a user or meta
searcher, this is one search rather than 2945, although
it might be used in different ways by different forms.
Note, this also allows us to get a mixed view, when
a URL is targeted by both detected search forms and
detected non-search forms.

We found 44744 form targets in the Research
Finder crawl, of which 19337 or 43% were targets
of detected search forms. Of these 1563 were mixed,
being targeted by both detected search forms and de-
tected non-search forms.

Table [10] is a summary of how many of the 19 337
search targets appeared at each Australian Univer-
sity. It counts the targets of searches, rather than
the sources. For example, if http://www.uq.edu.au/
search/index.asp is the target URL of 4681 forms,
it is counted once in Table We include a sepa-
rate count for forms which are targets of two or more

detected search forms.))
n interesting case is University of Queensland

(uq.edu.au), which included 55 detected search tar-
gets with multiple forms, but a further 4850 with only

one form. The top ten most referenced search targets
are:

http://www.uq.edu.au/search/index.asp yes=4681
http://www.uq.edu.au/search/index.asp? yes=1662
http://www.sph.uq.edu.au/search/sphsearch.idq yes=1180
http://www.uq.edu.au/myadvisor/index.html yes=263
http://www.its.uq.edu.au/factsheets_search.html yes=234
http://www.commerce.uq.edu.au/cgi-bin/htsearch yes=104
http://www.its.uq.edu.au/faq_search.html yes=77
http://www.uq.edu.au/myadviser/index.html yes=57
http://asc.uq.edu.au/gradnet/main.php yes=56 no=1
http://www.library.uq.edu.au/uql/cgi-bin/subjectsearch.pl yes=27

all of which are search interfaces.

The least referenced UQ targets included 4065 of
the form http://student.uq.edu.au/~sNNNNNNN/,
where NNNNNNN is a student number. These forms
appear on disclaimer pages, asking people to click on
a form button to proceed. Because the forms have
few other features, they reach the leftmost SEARCH
node in Figure

The worst case we examined was ANU (anu.edu.
au), with the top ten targets:

http://search.anu.edu.au/anu yes=2600 no=345
http://search.anu.edu.au/external yes=660 no=65
http://tux.anu.edu.au/twiki/bin/search/know/ yes=65
http://netserve.anu.edu.au/commpro.html yes=36
http://msowww.anu.edu.au/cgi-bin/htsearch.wrap yes=35
http://arp.anu.edu.au/arp-cgi-bin/esc yes=31
http://law.anu.edu.au/legalworkshop/lwscripts/(none) yes=23
http://tux.anu.edu.au/twiki/bin/search/twiki/ yes=22
http://tux.anu.edu.au/twiki/bin/rdiff/documentation/
webstatistics yes=20
http://tux.anu.edu.au/twiki/bin/view/documentation/
webstatistics yes=20

They include mixed judgments on a definite search
interface (http://search.anu.edu.au) and a num-
ber of interfaces which fall foul of the same issue that
included UQ student pages (leftmost SEARCH node
in Figure .

We conclude that, although the Figure [4 rule was
easily implemented and allowed the first ever auto-
mated overview of its type, further work would be
required to discover which of the 19337 “detected
search interfaces” are actually search interfaces. De-
spite this, the large number of detected search targets
suggests that a meta search project, paralleling the
Research Finder search engine project, would have
access to plenty of search interfaces. The list of 19 337
would be a useful starting point in such an endeavor.

8 Conclusion

This paper has shown how to automatically discover
search interfaces from a set of HTML forms. A de-
cision tree was developed with the C4.5 learning al-
gorithm using automatically generated features from
the HTML markup that can give a classification ac-
curacy of about 85% for general Web interfaces.

An obvious next step is to apply methods such
as Callan & Connell (2001) or Ipeirotis et al. (2001)
to invent the first fully automated search engine for
search engines. Our tests in Australian research in-
stitutions show that there are many candidate search
engines, although further work will be needed to elim-
inate false positives.

References

Callan, J. & Connell, M. (2001), Query-based sam-
pling of text databases, in ‘ACM Transactions
on Information Systems’, Vol. 19, pp. 97-130.

http://search.anu.edu.au/anu
http://search.anu.edu.au/anu
http://www.uq.edu.au/search/index.asp
http://www.uq.edu.au/search/index.asp
http://search.anu.edu.au

Callan, J. P., Lu, Z. & Croft, W. B. (1995), Searching
distributed collections with inference networks,
in ‘SIGIR’95’, ACM Press, pp. 21-28.

Chang, C.-C. K., Garcia-Molina, H. & Paepcke, A.
(1996), ‘Boolean query mapping across heteroge-
neous information sources’, IEEE Transactions
on Knowledge and Data Engineering 8(4), 515—
521.

Chidlovskii, B. & Borghoff, U. M. (1998), Query
translation for distributed information gathering
on the web, in ‘International Database Engineer-
ing and Application Symposium’, pp. 214-223.

Craswell, N., Bailey, P. & Hawking, D. (2000), Server
selection on the World Wide Web, in ‘Proceed-
ings of the Fifth ACM Conference on Digital Li-
braries’, pp. 37-46.

Craswell, N., Hawking, D. & Thistlewaite, P. B.
(1999), Merging results from isolated search en-
gines, in ‘Australasian Database Conference’,
pp- 189-200.

Dreilinger, D. & Howe, A. E. (1997), ‘Experiences
with selecting search engines using metasearch’,
ACM Transactions on Information Systems
15(3), 195-222.

Fubr, N. (1999), ‘A decision-theoretic approach
to database selection in networked IR’,

ACM Transactions on Information Systems
17(3), 229-229.

Gravano, L., Chang, C.-C. K., Garcia-Molina, H. &
Paepcke, A. (1997), STARTS: Stanford proposal
for Internet meta-searching, pp. 207-218.

Gravano, L., Garcia-Molina, H. & Tomasic, A. (1999),
‘Gloss: text-source discovery over the inter-
net’; ACM Transactions on Database Systems
(TODS) 24(2), 229-264.

Hawking, D. & Thistlewaite, P. (1999), ‘Methods for
information server selection’, ACM Transactions
on Information Systems. 17(1), 40-76.

Ipeirotis, P., Gravano, L. & Mehran, S. (2001),
‘Probe, count, and classify: categorizing hidden
web databases’, ACM SIGMOD 30(2), 67 — 78.

Lawrence, S. & Giles, C. L. (1998), ‘Context and page
analysis for improved web search’, IEEE Internet
Computing 2(4), 38—46.

Perkowitz, M., Doorenbos, R., Etzioni, O. & Weld,
D. (1997), ‘Learning to understand information
on the internet: An example-based approach’,
Machine Learning (to appear).

Rasolofo, Y., Abbaci, F. & Savoy, J. (2001), Ap-
proaches to collection selection and results merg-
ing for distributed information retrieval, in
‘CIKM’01’, ACM Press, pp. 191-198.

UW (2001), ‘Weka machine learning project’.

free suite of machine learning tools

available from the University of Waikata.
http://www.cs.waikato.ac.nz/ ml/.

Yuwono, B. & Lee, D. L. (1997), Server ranking for
distributed text retrieval systems on the internet,
in R. Topor & K. Tanaka, eds, ‘DASFAA 97,
World Scientific, Singapore, Melbourne, pp. 41—
49.

	Introduction
	Motivation --- Distributed information retrieval
	Interface Detection
	Feature generation
	Classification

	Testbeds
	ANU collection
	Random Web collection

	Results
	Decision tree for the ANU
	Decision tree for the random Web

	Discussion
	Further analysis
	Rule cross validation
	Evaluating other classifiers
	Real-world testing

	Conclusion

