
Secure Search in Enterprise Webs: Tradeoffs in Efficient
Implementation for Document Level Security

Peter Bailey
CSIRO ICT Centre

GPO Box 664
Canberra ACT 2601 AUSTRALIA

+61 2 6216 7055

Peter.Bailey@csiro.au

David Hawking
CSIRO ICT Centre

GPO Box 664
Canberra ACT 2601 AUSTRALIA

+61 2 6216 7060

David.Hawking@csiro.au

Brett Matson
Funnelback Pty Ltd
401 Clunies Ross St

Acton ACT 2601 AUSTRALIA
+61 2 6229 1710

brett@funnelback.com

ABSTRACT

Document level security (DLS) – enforcing permissions
prevailing at the time of search – is specified as a mandatory
requirement in many enterprise search applications.
Unfortunately, depending upon implementation details and
values of key parameters, DLS may come at a high price in
increased query processing time, leading to an unacceptably
slow search experience. In this paper we present a model and a
method for carrying out secure search in the presence of DLS
within enterprise webs. We report on two alternative commercial
DLS search implementations. Using a 10,000 document
experimental DLS environment, we graph the dependence of
query processing time on result set size and visibility density for
different classes of user. Scaled up to collections of tens of
thousands of documents, our results suggest that query times
will be unacceptable if exact counts of matching documents are
required and also for users who can view only a small
proportion of documents. We show that the time to conduct
access checks is dramatically increased if requests must be sent
off-server, even on a local network, and discuss methods for
reducing the cost of security checks. We conclude that
enterprises can effectively reduce DLS overheads by organizing
documents in such a way that most access checking can be at
collection rather than document level, by forgoing accurate
match counts, by using caching, batching or hierarchical
methods to cut costs of DLS checking and, if applicable, by
using a single portal both to access and search documents.

Categories and Subject Descriptors

H.1.0 [MODELS AND PRINCIPLES – General]; H.3

[INFORMATION STORAGE AND RETRIEVAL]; E.5

[DATA – Files]

General Terms

Algorithms, Theory, Security, Design, Experimentation,
Measurement, Performance.

Keywords

Document level security; collection level security; access
control; enterprise search; caching; performance; scalability; file
systems; security models.

1. INTRODUCTION
As a number of authors have observed, enterprise search is
different to search on the Web at large [4, 6, 9]. One of the
demands of real world search in enterprise environments, and
increasingly in large scale Web properties (such as Yahoo! 360
[http://360.yahoo.com]), is to respect the access security of
individual documents and information when showing results for
a search query [8]. “Document level security” is a phrase
intended to capture this fine grain level of access control. (In
database circles, this concept is referred to as row, column or
field level security.) It is commonly distinguished from
collection level security in which access is granted or denied to
an entire set of documents at once. The latter is commonly
applied to a complete repository or some easily defined subset
(such as directory hierarchies).

This paper makes four main contributions. First, in Section 3,
we describe a model of secure search in a document level
security environment. The widely varying security environments
that may be encountered make a general purpose solution more
complex. However, these break down into two basic
architectures, which are illustrated.

Second, although the solution to the problem is not conceptually
hard, it appears not to have been documented in any depth
previously. We provide a specification of the solution in terms
of a pseudo-code algorithm in Section 4.

Third, we describe our experiences in Section 5 with two
implementations and the lessons learned from implementing
secure search in real world environments. In particular, we detail
the interaction between user expectations about search and the
mechanics of a solution’s implementation.

Fourth, in Section 6 we carry out experiments and analysis to
explore the model. These allow us to make a number of
conclusions and recommendations on how best to provide
efficient secure search in Section 7.

2. RELATED WORK
To be clear about the task: in response to a user’s query to a
search engine, a page containing search results is shown, such
that only those matches from the result set which correspond to
the user’s rights to view each match are included.

Various papers mention that this is an intrinsic problem for
enterprise search systems [2, 4, 6, 9].

One of the earliest and most comprehensive enterprise search
systems to support search that respects document level security
is Verity’s enterprise search engine. The latest version is Verity

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CIKM’06, November 5–11, 2006, Arlington, Virginia, USA.

Copyright 2006 ACM 1-59593-433-2/06/0011...$5.00. This is the

author's version of the work. It is posted here by permission of

ACM for your personal use. Not for redistribution.

K2 Enterprise (K2), and in a white paper their security model is
described in some detail [10]; there is also a rather higher level
overview in [1]. Effectively, users must authenticate themselves
with the K2 system by providing log-in information, and the
user is provided back a “ticket”. As far as we understand from
the white paper, the system then associates this ticket with the
user’s authentication to the K2 system itself, and to other LDAP,
Windows NT, UNIX, or other secure repositories’ security
systems which Verity is indexing. These repositories are
intermediated by a K2 Gateway interface, which permit the K2
Server to cache access control lists (ACLs) for each document
provided by the repository. Results that are limited by document
level security can then be filtered by checking the user’s
credentials against each document’s cached ACL. No
information is provided about how K2 maps user credentials (if
the log-in information is not identical across different
repositories), represents ACLs for systems that do not provide
statically checkable security, or updates ACL caches.

Other commercial enterprise search systems (e.g. Convera’s
RetrievalWare product [http://www.convera.com/], Coveo
Enterprise Search [http://www.coveo.com] and Google Search
Appliance [http://www.google.com/enterprise/gsa]) claim to
provide support for document level security on their web sites.
Coveo’s solution is based on various Microsoft technologies
(including file shares, IIS, SharePoint, and Exchange).

According to [5], Google’s Search Appliance supports a range
of authentication facilities, including HTTP basic authentication
and/or NTLM authentication, as well as integration with form-
based single sign-on systems. These forms of authentication
work by having the Search Appliance masquerade as the user.
Alternatively, users can provide X.509 client certificates to the
Search Appliance to authenticate directly with it. Finally,
custom security systems, possibly built on top of LDAP, can be
used with a data repository, by developing an Access Connector
in compliance with Google’s Authentication SPI (which in turn
is written using the SAML 2.0 specification). The Access
Connector intermediates between the data repository and the
Search Appliance’s presentation of user credentials.
Authentication credentials are cached by the Search Appliance
for the duration of a session. At result presentation time,
individual documents are checked by the Search Appliance
communicating through an Authorization SPI, which verifies
whether a user can view the document. The Authorization SPI is
provided by an Access Connector system developed for each
repository, and is used regardless of authentication method.

Coveo also provide an extensive information article relating to
document level security, and describe the basic approach they
use [3]. As with Verity’s K2, they extract the access lists for
each document (including emails etc) that they index, and cache
the results. At query time, the user’s credentials are then
checked against the access control lists, and filtered to remove
those that do not match.

In a related example, IBM’s WebSphere Portal Engine enables
secure search over its DB2 Information Management Software
which provides facilities to associate security tokens with
individual documents [7]. These remain associated with the
document through parsing and indexing processes. However,
they provide no details on how the search system works to
match the user credentials with the security tokens at query time;
it is possible that high level search adapters are provided, in a
similar fashion to the Verity Gateway mechanisms. Similarly,

Microsoft’s SharePoint portal software supports document level
security using its Rights Management Services
[http://www.microsoft.com/windowsserver2003/technologies/rig
htsmgmt/default.mspx].

Commercial organizations almost never provide full detail of the
mechanics or performance of their secure search
implementations. Google’s recent documentation is a first for
extensively defining the security API and process by which the
Search Appliance interacts with the customer-implemented
Access Connector. In our review of the literature, we have been
unable to find additional information describing how search is
integrated with document level security.

2.1 Other environments with document level

security
Search engines on the Web at large (e.g. Google, Yahoo!, MSN)
typically avoid any attempt to index restricted accessibility
documents, since the performance impact in reporting secure
results to even tens of thousands of users, let alone hundreds of
millions, is too large, and the complexity of managing user
authentication too challenging. (Note that some websites present
different information to major search engines even though their
information is not publicly accessible. This technique is a form
of web cloaking. Such content is discoverable through search,
but not directly by a user attempting to access the source
material.)

Personal search engines (such as Google Desktop Search,
Copernic, or Microsoft Windows Desktop Search) work by
indexing only content that is accessible to the user. Thus
security is implicit since content is not indexed that could not
otherwise be found.

3. MODEL
We now introduce a model to capture the properties of secure
enterprise search. This model is used to understand how an
algorithm and implementations must operate, and forms the
basis for analysis of performance.

3.1 Definition of terms
There are some terms which are used consistently throughout the
paper; we provide our understanding of them here to ensure
clarity.

• User authentication – the means by which an individual
presents their credentials (for example, login name and
password) to gain access to some protected system.

• Collection – a set of documents indexed by the search
engine.

• Document – any information that is indexed as a unit by the
search engine. Examples include emails (with or without
attachments), individual files in a file share, records within
a database, and web pages.

• Repository – a collection and an associated information
management system that provides additional services, such
as automatic metadata management or access control.
Examples include content management systems, databases,
but also file shares (with associated operating system
mechanisms for security and access).

• Security permissions system – a computer system which
determines whether a person is permitted to access

individual documents. A specific document’s access rights
are referred to as its security permissions.

• Access control list – one form of security permissions
which may be copied from a document to a copy of the
document and otherwise queried by a third party system.
Not all security permissions systems support being
represented as a set of access control lists.

3.2 Architectural issues
We assume the following environmental parameters for this
discussion:

• there is an unknown (and possibly large) number of users;

• there are many documents;

• different security exists over some subset of the documents,
which means not all documents are to be visible to all
users;

• a single search engine1 is in use;

• document level security can be determined with respect to a
user’s credentials;

• changes to security must be respected, within some
specified interval of time.

The approach described in this paper is most commonly
encountered in enterprise information systems with one or more
repositories but with a single mechanism for determining user
authentication to the repositories being searched. User
authentication credentials are then matched against security
permissions on a per-document basis to determine whether a
document can be viewed or not by an individual user.

A fundamental premise is that the search engine must be
omniscient (with respect to the collections) – that is, it must be
able to fetch and index every document available. This premise
critically affects security risks with respect to accessing the
search engine, as uncontrolled direct access (without
authentication) to the search engine must be prevented.

There are two basic architectures which may be adopted:

1. the search engine knows nothing about security as
implemented within each repository; or

2. the search engine must know almost everything about
security.

The first architecture is useful when existing repositories are
managed by corresponding sophisticated information
management systems (for example, a content management
system, with its own in-built security model and policies). In this
case, the repository is responsible for managing document level
security, and treats the search engine as a black box which
provides high quality ranking of documents irrespective of
security – see Figure 1. The repository may subsequently impose
additional sorting or re-ranking of results, based on additional
information it has about each document.

1 Of course, multiple search engines may be in place within the

enterprise, and individual repositories may have their own
inbuilt search engines. However, for this paper, we assume a
single search engine (or strictly speaking, search engine
interface). It may provide federated search over other search
engines where required.

Care must be taken to prevent the repository from accessing any
information from the search engine about collections other than
those corresponding to its own, and from users accessing the
search engine directly (at least for this collection). In other
words, the repository acts as the user interface to the search
engine. Non-enterprise environments where this architecture is
in use include general Web portals with personalized content
(for example, Yahoo! 360).

The second architecture works best in environments with single
sign-on to all repositories, using directory services (such as
LDAP or ActiveDirectory) to provide user authentication and
security policy services. In this approach, the search engine
holds the user credentials, and either caches the access control
lists associated with each document at crawling/indexing time or
queries corresponding repositories when preparing a result set to
ascertain the rights of the user to view each potential document
in the result set – see Figure 2.

Figure 1 - Architecture 1 : search engine accessed only via

repositories, knows nothing about user security

Figure 2 - Architecture 2 : search engine intermediates

repositories, knows about user security

In both cases, an algorithm is employed (see Section 4) which
filters the results based on the user. The algorithm takes into
account paging into results sets beyond the first page, and there
is a discussion about the security implications of exposing
parameters through URLs.

3.3 Parameters
There are a number of key parameters which affect an
implementation of a search solution.

1. Acceptable time (AT) - the acceptable time for delivery of a
page of results, post the submission of the user’s query. The
experience of people with Web search engines means that
their expectations have increased such that any time longer
than a few seconds (5-10 at the utmost limit, and preferably
less than 1-2 seconds) will be considered to have failed,
and they will start to click the browser refresh button. In
certain environments however, it is possible that a fully
accurate result (for example in a legal firm retrieving all
possible precedents) is critically important, and minutes can
elapse to carry out this search correctly.

2. Number of results (NR) - the number of displayable results
which must be calculated. This number could be only those
required to show one page of results. Alternatively, it could
be all possible results, in scenarios where an accurate count
of the number of matching documents must be reported.
Clearly, the more results required, the greater the time
taken to produce the page due to the increased number of
security checks to be performed.

3. Average security check time (ASCT) - the average time to
check whether a document’s security permissions allows it
to be visible to a user.

4. Visibility density (VD) - the approximate density of
documents visible to a normal user for a representative
query (expressed in the range 0..1). In other words, is the
information environment one in which most documents are
visible to most people (common in our experience in many
enterprise intranets) – a VD of close to 1, or one in which
most documents have highly restrictive access rights (for
example, in security agencies) – a VD closer to 0.

5. Overheads (O) include sending the request to the server
(including any user credentials), performing the search,
building the page output, and returning the page to the user.
It may also be used to model scalability – that is, the need
to serve multiple search requests (to other users) within any
acceptable time period.

6. Staleness (S) - the acceptable level of staleness of the
security used when checking access rights for a user. The
level can range from none (i.e. security must be up to date
and immediate) to a number of days. The greater the degree
of staleness, the more that caching techniques can be used.
Conversely, if no staleness is acceptable, caching can only
be used within the request calculation itself.

A useful secure search engine should satisfy the following
inequality:

(1) O
VD

ASCTNR
AT +

×
≥

Reformulating this, we get:

(2)
NR

VDOAT
ASCT

×−
≤

)(

Or:

(3)
ASCT

VDOAT
NR

×−
≤

)(

For example, if the acceptable time is 1 second, overheads make
up 0.25 seconds, the number of results is 10, and the visibility

density is 80%, the average security check time must be 0.06
seconds or less.

Note that this analysis only deals with average case scenarios. It
is very possible that worst case security scenarios (e.g. where
either the average security check time or the visibility density for
a particular query or a particular user) could cause the
acceptable time to be exceeded.

Also missing from this analysis is any performance scaling with
regard to the number of users accessing the system
simultaneously. However, the overheads element can be
considered to capture part of this issue. In addition, search is
intrinsically a scalable problem in that more search servers can
be added for meeting more user queries simultaneously.

The level of staleness which is tolerated for the environment is
essentially an input into the choice of possible algorithms for
access checking.

Since many environments have a fairly low level of acceptable
staleness (why else have document level security after all), there
are hard tradeoffs in the implementation techniques to keep
average security check time low. Some of these tradeoffs are
discussed in more detail in Section 6.

The mechanics of an implementation rely on having an
algorithm for producing pages of results, described in the next
section.

4. ALGORITHM
We claim no special novelty in the filtering algorithm described
below, but present it here for completeness. It is written in a
pseudo-code that should be readily rewritten into the syntax of
current programming languages. The algorithm returns a set of
document ids for the current “page” of results to be displayed by
a search engine’s Web interface. It assumes the existence of two
existing services – a search engine and a security system.

Existing services:
searchEngine.query (query: string, number: int, offset: int)

: documentId list
securitySystem.check (id: documentId, for:

authenticationTokens) : boolean

Method:
getResults (

queryText : string (empty),
credentials : authenticationTokens (null),
resultsPerPage : int (NR),
currentOffset : int (0),
retrievalSize : int (NR*2/VD) : list

Local variables:
pageResults : list (empty)
results : list (empty)
result : documentId (null)
maxResultIndex : int (0)

Code:
repeat

results = searchEngine.query(queryText, retrievalSize,
currentOffset);

if results.size == 0 then return pageResults;
maxResultIndex = currentOffset + results.size;
while pageResults.size < resultsPerPage and

currentOffset < maxResultIndex
do

result = results.at(currentOffset);
if securitySystem.check(result, credentials)
then pageResults.append(result);
currentOffset = currentOffset + 1;

until pageResults.size >= resultsPerPage;
return pageResults

Notable about the algorithm is that attempts to gain access to
secure results by forging URIs cannot work, since the
currentOffset parameter (for the starting rank within the raw
result set) does not mean security is not checked; it is just a
shortcut to avoid first checking currentOffset results before
reaching the start of results for a later “page”.

5. IMPLEMENTATIONS
Secure search with document level security has been
implemented along the lines of the algorithm described above by
the first author while at Synop Pty Ltd (using architecture type
1) in its Sytadel content management system, and by the
Panoptic team at CSIRO (using architecture type 2). (The
Panoptic search engine used for experiments is now available as
Funnelback, through Funnelback Pty Ltd.)

5.1 Sytadel implementation
The Sytadel implementation of document level security search
uses a search engine adapter framework to plug in any search
engine. All content is exposed to the search engine for indexing.
When a search is carried out through Sytadel, the query terms
are parsed and converted by the adapter to the underlying search
engine’s query language. Results from the search engine are then
filtered according to Sytadel’s internal security service and the
user’s credentials accessing the Sytadel system. This approach
means that there is no security staleness – changes in security
are reflected immediately in the search results. The search
engine must prevent access to the collection from any user or
system other than Sytadel.

Sytadel uses the search engine as one of a number of possible
retrieval rankings that may be applied over a set of documents,
or as a way to obtain a set of documents based on some free text
query that can be subsequently filtered by other properties. All
content is stored in XML, and the XML content plus content
metadata can be used to filter results (in addition to the security
restrictions).

5.2 Funnelback implementation
The Funnelback implementation of document level security
search has been applied with Windows NTFS fileshares using
NTLM authentication. The current implementation crawls a
local or remote file collection, augmented with the access
control lists. At search time, the user authenticates with the
Funnelback search engine via the Windows IIS web server, and
the credentials are then used to determine security on a per
document basis by checking the access control list for the
document (or the chain of directories it resides in) in the local

cached copy. This approach means that there is a degree of
staleness associated with the security of the search results; based
on the crawl frequency.

The current implementation has adopted this approach to avoid
the additional complexity of having Funnelback manage security
services for the clients. NTLM authentication is based on a
client/server model, and to check a third party repository directly
requires that the client authenticate with the repository server,
not the search engine web server. Such implementation practices
are possible, by building in a mechanism whereby Funnelback
requires the user to authenticate against each repository server,
not the web server, although the web server issues the
authentication challenge type 2 message. The Davenport
WebDAV-CIFS (SMB) gateway system [http://sourceforge.net/
projects/davenport/] is an example application which supports
this approach.

5.3 Lessons learned
There have been a number of lessons learned through these
implementations.

The visibility density within an organization obviously has a
major effect on performance. In our experience, the majority of
organizations make the majority of their information available to
everyone within the organization, meaning visibility density is
typically high. There are usually a small number of exceptions
within the collection, such as private HR information (such as
medical details, contacts, job applications, etc), which are much
more highly restricted. In such environments, document level
security is clearly viable and can be made more so if documents
are organized into collections such that individual checks are not
required for most documents.

To deploy a solution that meets good quality of service (e.g. AT
≤ 1 second) for all users even in worst case scenarios, using a
visibility density (VD) value in the model that is an average for
the 10th percentile of users with least access (rather than an
average of all users) will help to characterize the maximum
average security check time that must be achieved.

In environments where average (not just worst case) visibility
density is very low, it may make sense to use a completely
different approach. One obvious solution is to deploy personal
search engines (such as Google Desktop Enterprise), which
search only the information publicly available to an individual.
Such per user approaches are viable in small to medium
organizations, where the network traffic associated with
crawling and indexing information remains acceptably low. In
large organizations, having thousands of personal search
crawlers attempting to access repositories is likely to use too
much of the network bandwidth and impose large loads on the
servers.

Contrary to general Web search, where it is understood that
content is not immediately indexed, enterprises typically want
low levels of delay between new content being created and
becoming searchable. In our experience, the same applies to
security. When an enterprise changes its security policies, it
would like them to apply immediately to search results as well,
as people generally have a poor understanding of the costs of
having zero security staleness in search results. A discussion is
generally required to allow business stakeholders to make an
informed decision on the tradeoffs to be made in a search system
implementation. Using the concepts expressed in the model,
especially relating to staleness and acceptable time may assist.

Security systems tend to be intrinsically complex, and attempt to
mirror much of an organization’s implicit human-based rules
and processes that have been built up over time. Human systems
are able to adapt easily to ad hoc changes and exceptions;
computer based ones are much more rigid. In our experience,
enterprises are using a mixture of repositories, and often each
with its own security model. There is considerable overhead
matching the security model specifics of a repository into a
uniform representation for the search system, even when it is
really only read permissions that are required. These
complexities contribute to a high degree of difficulty in
deploying a search solution which constrains the average
security check time to a level that preserves an acceptable time
for search responses.

The choice of architecture (type 1 or type 2) also plays an
important part in the implementation process. In our experience,
the choice comes down to what system is perceived to be the
dominant interface to access to information within the
enterprise. If it is the search engine, then architecture type 2
should be chosen; if a CMS or other primary repository, then
type 1. However, either choice may require making changes to
the patterns of user behavior in access to information and/or
additional changes to integrate other repositories (and their
security systems) with the chosen primary interface.

The exposure of users to Web search interfaces has set a number
of expectations about how search “works”. For example, users
expect to see the number of results available, and they expect to
see hyperlinks into successive (and prior) pages of results.
Calculating the complete number of results visible to a user is
possible, but comes with additional costs as is seen in the next
section. Generating next page/previous page hyperlinks on result
pages is straightforward and efficient. Generating pages 1 2 3
… hyperlinks is hard (and the implementation will be slow). For
example, to have a page 4 link requires that the system searches
linearly through the result set checking (and discarding) results
1-39 to find results 40-49 that match the security of the user, and
it must also calculate the total number of results visible to the
user. Of course, both of these features can be dropped for
performance reasons. Even on Web search engines, the numbers
are nearly always just estimates, and there is a sharp dropoff in
people clicking past the first page of results.

Lastly, the search engine must have “global” security rights –
the ability to view all content anywhere in the organization.
Administrative access to the search engine’s “global” collection
(when not mediated through the security system) must be highly
protected to the same or higher degree that administrators with
access to other secure repositories are restricted.

6. EXPERIMENTAL TIMES
While the implementation experiences are illuminating, hard
experimental analysis of our model provides even more insight.

6.1 Setup
Basic setup of the experiment involved indexing and searching a
10 000 document collection from the Wikipedia’s simple dump
(http://download.wikipedia.org/wikipedia/simple/) using the
CSIRO’s Panoptic search engine. The test server was a Dell
Optiplex 3GHz Pentium 4, with 512MB of RAM and 150GB of
disk storage, running Windows 2003 SP1. Various patterns of
enterprise security were used for splitting this collection and
investigated. Times were reported to a log file, with 5 runs per
query per user, which were then averaged. All times reported are

in milliseconds. In practice, splitting the collection according to
different security patterns reveals relatively little of interest.
Instead, using different queries and different users for a single
security pattern demonstrates everything that is salient.

The times reported use the following security pattern split,
which is approximately representative of one particular way that
access control might be applied within an enterprise. Note we
make no claim that this is a real enterprise security scenario,
which we expect would be considerably more complex. An
organization size of about 50-100 might be representative.

Security is applied primarily to groups of documents:

• 1% of docs visible to Private group only – i.e. 100
documents, representing one user

• 6% of docs visible to HR group only

• 24% of docs visible to anyone (Public group)

• 69% of docs not visible (Other Private group docs)
representing other individuals

Visibility by users when conducting searches:

• Public person can view Public group (24% of docs)

• Private person can view Private and Public groups (25% of
docs)

• HR person can view Public and HR groups (30% of docs)

• Contractor person can view only 1 document per query.

The baseline in each test query is Panoptic with no document
level security applied. This is approximately equivalent to a case
where collection level security is applied, since there is a single
check made to decide if the user is permitted to view the
collection.

Table 1 – Query terms and number of documents which

match within the collection, irrespective of security

Term Number of docs

aloof 1

verse 10

triangle 20

sugar 50

available 100

china 249

had 499

may 743

like 1008

are 2511

of 5216

wikipedia 10000

A set of one word queries was determined from the collection’s
lexicon, to approximate progressively larger numbers of
potentially matching documents from the collection. The queries
and number of potentially matching documents are reported in
Table 1. Again, these are not representative of a real enterprise’s

search queries; they are used to examine the behavior of the
system with respect to properties of the collection.

6.2 Reporting the exact counts of matching

documents
Panoptic is operated first in a mode whereby all possible
matching documents are found before reporting the first page of
results (NR = number of docs). This enables an exact count of
the total number of visible matches to be reported. It means that
all potentially matching documents must be checked against a
user’s security credentials before deciding whether to include
the result or not.

Results in Figure 3 demonstrate that as the number of documents
that are potentially visible to the user increases, the overall time
to process the request converges regardless of the visibility
density, and becomes proportional to the number of potential
matches. A log scale in the y-axis is used to more effectively
show the correlation between time and the number of potentially
matching documents (in the x-axis). In comparison, the
processing time with no security checking remains roughly
constant at about 100ms, from about 20 documents, with a
minimum time of around 6ms for just 1 document. These results
are in line with our model (1) of the parameters, remembering
that the dominant factor is the number of results times the
average security check time. The overheads appear to increase
as the number of results increases, but stabilize at 100ms for no
security check times at 20 documents. Note that timing
inaccuracy renders these values only approximate, not precise.

 A peculiarity of interest is that the no security times are greater
than secure times for small numbers of potentially matching
documents. This apparent anomaly is explained by the
additional overhead in producing additional result information
such as query biased summaries. The no security time for 20

potentially matching documents must show 20 actually matching
results, but the various secure results are showing from 1 to 4
results (according to visibility density), there is considerably less
per result presentation overhead required. We verified this by re-
running the “triangle” query (with 20 potentially matching
documents) for all users with a number of different result
presentation modes. When only a single result had to be shown
the query processing time is identical. By 100 potentially
matching documents, the Public, Private and HR people’s
searches must also show 20 results, and the timing reflects this.
The Contractor takes substantially less time than the other secure
people, since they only ever produce 1 result in the results page.

From an implementation perspective, with up to 1000
potentially matching documents, the query time to calculate
security correctly over all matching documents remains close to
the no security check time. Beyond that level, and certainly by
10 000 potential matches, the query time grows by up to an
order of magnitude, and appears to be growing linearly with the
number of potentially matching documents. Note that large
numbers of potential matches are a distinct possibility,
depending on the query and the size of the organization. For
example, in [4] the authors report they found 4.6 million non-
duplicate pages within IBM’s intranet.

6.3 Security checking times
In Table 2, we calculate the incremental cost per document of
checking security on all potentially matching documents versus
the no security check computation time. At low values of
potentially matching documents, since the no security check
time is greater due to the overhead in producing more actual
results (up to 20 for a complete page) than for the secure results
which may have less than 20, the times are negative. However,
from the query may (with 499 matching documents), the times
start to stabilize for the Public, Private and HR users. The

Figure 3 - Times for queries with different users and on-server access checks

1

10

100

1000

10000

1 10 20 50 100 249 499 743 1008 2511 5216 10000

number of potentially matching documents available

ti
m

e
 (

m
s

)

no security

public

private

hr

contractor

exception is for the Contractor. This exception demonstrates that
the code path is distinctly different when a match is found to be
visible compared to when a match is not visible. An average of
the times for the last 5 queries is shown in the final row. The
average security check time for the Public, Private and HR users
is approximately 0.11 ms per document. These costs are being
hidden relative to the overall request processing overheads at
small numbers of potentially matching documents.

Table 2 – Average security check time (in ms) per document

calculated against the no security check time baseline

Number of docs Public Private Hr Contractor

1 0.000 0.000 0.000 -3.200

10 -2.140 -1.820 -1.820 -1.820

20 -2.950 -2.800 -2.650 -3.110

50 -0.620 -0.428 -0.556 -1.240

100 0.062 0.030 0.062 -0.590

249 0.076 0.088 0.088 -0.177

499 0.110 0.110 0.110 -0.046

743 0.097 0.105 0.097 0.004

1008 0.106 0.099 0.106 0.025

2511 0.211 0.103 0.102 0.070

5216 0.048 0.102 0.104 0.085

10000 0.102 0.102 0.144 0.091

average of last 5 0.113 0.111 0.111 0.055

Considering equation (3) from the model in section 3.3,
assuming the same example values of 1 second AT, 0.25 second
O, and 80% VD, we see that the maximum number of results
which can be checked for security at this performance level of
ASCT, while maintaining the quality of service (of a 1 second
acceptable time), is 5454.

6.4 Caching and batching
In the test scenario, all documents were located on the same
server as the search server. The implication of this is that
checking security is an efficient activity, since no inter-server
requests need to be performed. Such a scenario is also
representative of one where some security staleness is
acceptable, since the access control information for all
documents may be cached on the search server at collection
indexing time for efficiency.

Some simple inter-server LDAP search tests were performed to
determine what the cost of calculating security in a distributed
repository environment where the acceptable security staleness
is zero. These involved querying an LDAP (ActiveDirectory)
server running on similar hardware to the search server from
another server in the same local network. The average system
time of an LDAP query in these circumstances was 6.4 ms.

Reconsidering equation (3), again assuming the same example
values, we see that the maximum number of results which can be
checked for security at this performance level of ASCT, while
maintaining the quality of service is 93.

A straightforward implementation to check access means that at
best 157 potentially matching documents can be checked in a
second. With 10 000 potentially matching documents, it would

take over a minute to check security for all documents.
Obviously inter-server access control requests require
considerably more time than inter-process requests on the same
server, but this is a necessary tradeoff if security staleness must
be zero and repositories are distributed across multiple servers.

One way to dramatically improve performance in this situation
would be to batch requests for access control checks. Thus
instead of checking each result for a security match, a single
request could list 100 to 1000 document URIs to check for a
user, and the response would list the ones which are accessible.
There would be some increased overhead in building the larger
request and reply packets and transmitting them, but the bulk of
the time is due to network latency, not network bandwidth. At
present, the standard Microsoft file protocol (SMB/CIFS) does
not support such batching of requests, but according to Andrew
Tridgell (creator of Samba) this could be added through an
extension to the trans2 findfirst/findnext calls [Tridgell, personal
communication].

The conclusion to be drawn from this set of results is that
keeping the acceptable time at or below 1 second is going to be
increasingly difficult if a complete count of matching results
must be reported with any of the following: zero security
staleness and repositories distributed across servers; larger
collections; or more users conducting searches. In the hosted
search services operated by CSIRO for various organizations,
query request frequency often exceeds 1 query per second.

6.5 Prioritizing acceptable time
In the second set of tests, Panoptic is operated in a mode
whereby only sufficient security matched documents (numbering
20) to show a page of results are found. This corresponds to
setting NR in our model to 20. In this mode, if there are more
than 20 matching results, it is not possible for Panoptic to report
the total number of matches. The same query terms as before are
used, and times are shown in Figure 4.

The Contractor person is not shown in this graph, since their
results are the same as in the earlier graph (as they have only one
matching document). Note that performance in worst case
scenarios for either unusual queries (i.e. large numbers of
potential matches, but few visible ones to an average user) or
people with very low visibility density, will become
progressively poorer as the collection size increases.

For our sample people (Public, Private, and HR), as they have
plenty of available matches for each query, performance is
similar to the collection level/no security scenario by the time
approximately 100 potential matches are available. The same
behavior regarding number of results actually shown is
observed, with the no security time more expensive until this
level. Query processing time slowly increases past this level,
which is most likely due to slow increases in the memory
overheads for handling larger potential sets of matches. The
query processing time stabilizes at around 75-90ms, which
allows acceptable time to be kept well below 1 second even with
larger collections, and increases the scalability of the system
with respect to increasing query load. There are not significant
time differences between the different people, which is to be
expected as they have roughly similar visibility densities.

Additional performance wins can be obtained by examining
security as applied to hierarchical directory structures. Assume
that all human resources documents for the organization are
located in the directory /HR. When calculating the result set for

Figure 4 - Times for queries with different users to produce at most 20 results

0

10

20

30

40

50

60

70

80

90

100

1 10 20 50 100 249 499 743 1008 2511 5216 10000

number of potentially matching documents available

ti
m

e
 (

m
s

) no security

public

private

hr

Fred, who is not a member of the HR group, the directory can be
checked for directory traversal rights for Fred and found to be
blocked for access. Subsequently, any additional results located
in /HR must also be inaccessible, and the more costly access
control check can be replaced by simple string comparisons on
the URI path. This principle applies under both Windows
SMB/CIFS protocols and UNIX filesystems. (The reverse,
finding a document to be accessible and assuming all documents
in the directory are accessible, is obviously not safe. Note also
that these techniques only apply to collections consisting of files
in directories, and not general URI accessed documents, since
web servers may rewrite URI paths on an arbitrary basis).

7. CONCLUSIONS
By far the most efficient models for implementing security of
search results are: (a) an integrated portal and (b) collection-
level security. In the case of the former, currency of the security
model applied during search is guaranteed because the portal
controls both the search and the access control of documents.
Security checks can be quick because they are made internally,
rather than to a third-party system (necessitating inter-process
and sometimes inter-server communication). In the case of
collection-level security, only one access check need be made
per search rather than one for each potentially matching
document. Collection level security implementations can
respond quickly to changes in the permission rights of
individuals to access a collection, although not to changes in
which documents are part of the collection.

When document level security rights are enforced by a system
external to the search engine, or worse, on a separate server, the
costs of conducting access checks increase dramatically. In the
case where the search engine must report an accurate count of
matching documents, we found that query processing time was
increased by an order of magnitude for a query where there were

10 000 potentially matching documents. In a simple-minded
implementation the cost of security checks is linear with the
number of results to check, leading to query times of 100
seconds when the number of candidate results reaches 1 million
documents (possible in the largest enterprises), even using
caching of access control lists on the search server and thereby
sacrificing zero staleness.

When an accurate match count is not required, average costs
reduce substantially, and become close to those with collection
level security or without security at all. The Panoptic security
result mode of finding just 20 matching documents works
effectively in this way. A pragmatic compromise (used in the
Sytadel implementation) is to report match counts accurately
when there are fewer than some limited number of potentially
matching documents – typically between 100 and 1000.
However in worst case scenarios, e.g. searchers who have access
to only a tiny proportion of the available documents (low
visibility density), the query time may still end up being just as
high as with full security checking.

Costs of external security checks may be reduced by three
techniques: batching, caching, and exploitation of hierarchically
structured security permissions. Caching has tradeoffs in terms
of increasing staleness of security, and thus may not be
applicable in all enterprise environments. Batching requires the
development of extensions to existing file system protocols to
allow efficient access control lookups. Entities responsible for
the improvement of existing file system protocols should look to
provide such extensions in future. Hierarchically structured
security permissions may only apply effectively in file
collections.

Where possible, organisations should structure their document
security model to allow for collection level security to apply.
Additional collections for which document level security must
apply should be minimised. Search engines can then provide

search over multiple collections, and perform result list
combining to merge results, while still respecting per user access
control over all documents.

When implementing a search solution within an enterprise, our
model which relates acceptable time and other search
parameters to average security check time or number of results
should be used as a guide to ensure the search experience
remains effective and sufficiently fast to users. In our
experience, an acceptable time of 1 second should be seen as an
upper bound within which results should be returned for most
search tasks.

8. ACKNOWLEDGEMENTS
The authors thank Andrew Tridgell for sharing his specialist
expertise about the SMB/CIFS protocol. We also thank the
anonymous reviewers for helpful suggestions for improvement.

9. REFERENCES
[1] Abrol, M., Latarche, N., Mahadevan, U., Mao, J.,

Mukherjee, R., Raghavan, P., Tourn, M., Wang, J., and
Zhang, G. Navigating large-scale semi-structured data in
business portals. In VLDB ’01: Proceedings of the 27th

International Conference on Very Large Data Bases (San
Francisco, CA, USA, 2001), pp. 663-666. Morgan
Kaufmann Publishers Inc.

[2] Broder, A.Z. and Ciccolo, A. Towards the next generation
of enterprise search technology. IBM Systems Journal 43,

3, 451-454.

[3] Coveo, Inc. CES040406-1: Understanding document level
security.
http://www.coveo.com/support/articles/Information%20-
%20CES350-040406-1%20-
%20Understanding%20Document%20Level%20Security.ht
m. 2004

[4] Fagin, R., Kumar, R., McCurley, K.S., Novak, J.,
Sivakumar, D., Tomlin, J.A., and Williamson, D.P.
Searching the workplace web. In WWW ’03: Proceedings

of the 12th international conference on World Wide Web
(New York, NY, USA, 2003), pp. 366-375. ACM Press.

[5] Google, Inc. Google Authentication/Authorization for
Enterprise SPI Guide
http://code.google.com/enterprise/documentation/authn_aut
hz_spi.html

[6] Hawking, D. Challenges in enterprise search. In CRPIT

’04: Proceedings of the fifteenth conference on

Australasian databases (Darlinghurst, Sydney, Australia,
2004), pp. 15-24. Australian Computer Society, Inc.

[7] IBM, Inc. DB2 Information Management Software –
Information center. Enterprise search security.
http://publib.boulder.ibm.com/infocenter/db2help/index.jsp
?topic=/com.ibm.db2.ii.of.doc/admin/iiysasecure.htm.
Version 8.2.2. 2005.

[8] Lesk, M., Cutting, D., Pedersen, J., Noreault, T., and Koll,
M. Real life information retrieval (panel): commercial
search engines. In SIGIR ’97: Proceedings of the 20th

annual international ACM SIGIR conference on research

and development in information retrieval (New York, NY,
USA, 1997), pp. 333. ACM Press.

[9] Mukherjee, R. and Mao, J. Enterprise search: Tough stuff.
ACM Queue 2, 2, pp. 36-46.

[10] Verity® K2 Architecture White Paper. 2002. Verity, Inc.
http://www.verity.com/pdf/products/ics/k2_enterprise/white
papers/MK0366_K2Arch_WP.pdf

