Similarity-Aware Indexing for Real-Time Entity Resolution

Peter Christen Ross Gayler David Hawking
School of Computer Science Scoring Solutions Funnelback Pty Ltd
Australian National University Veda Advantage Dickson ACT 2601, Australia
Canberra ACT 0200, Australia Melbourne VIC 3000, david.hawking@acm.org

peter.christen@anu.edu.au Australia

ross.gayler@vedaadvantage.com

ABSTRACT

Entity resolution, also known as data matching or record
linkage, is the task of identifying and matching records from
several databases that refer to the same entities. Tradition-
ally, entity resolution has been applied in batch-mode and
on static databases. However, many organisations are in-
creasingly faced with the challenge of having large databases
containing entities that need to be matched in real-time with
a stream of query records also containing entities, such that
the best matching records are retrieved. Example appli-
cations include online law enforcement and national secu-
rity databases, public health surveillance and emergency re-
sponse systems, financial verification systems, online retail
stores, eGovernment services, and digital libraries.

A novel inverted index based approach for real-time entity
resolution is presented in this paper. At build time, simi-
larities between attribute values are computed and stored
to support the fast matching of records at query time. The
presented approach differs from other approaches to approxi-
mate query matching in that it allows any similarity compar-
ison function, and any ‘blocking’ (encoding) function, both
possibly domain specific, to be incorporated.

Experimental results on a real-world database indicate
that the total size of all data structures of this novel index
approach grows sub-linearly with the size of the database,
and that it allows matching of query records in sub-second
time, more than two orders of magnitude faster than a tra-
ditional entity resolution index approach. The interested
reader is referred to the longer version of this paper [5].

Categories and Subject Descriptors: H.3.3 [Informa-
tion Systems]: Information Storage and Retrieval—Infor-
mation Search and Retrieval; H.3.1 [Information Systems]:
Information Storage and Retrieval—Content Analysis and
Indezxing.

General Terms: Algorithms, experimentation, performance.

Keywords: Data matching, record linkage, scalability, sim-
ilarity query, approximate string matching, inverted index-
ing, phonetic encoding.

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

CIKM’ 09, November 2—-6, 2009, Hong Kong, China.

Copyright 2009 ACM 978-1-60558-512-3/09/11 ...$10.00.

1565

1. INTRODUCTION

Increasingly, many applications that deal with data man-
agement and analysis require data from different sources to
be matched and aggregated before they can be used for fur-
ther processing. The aim of entity resolution is to identify
and match all records that refer to the same entities. Tech-
niques for matching records that correspond to the same
entities have traditionally been applied in the health sec-
tor and within the census [8]. Increasingly, however, entity
resolution is now being used within and between many or-
ganisations in both the public and private sectors.

Because real-world data rarely contain unique entity iden-
tifiers across all the databases to be matched, most entity
resolution approaches compare records using the informa-
tion available in the databases that can partially identify
entities, such as their names, address details, or dates of
birth. A similarity is calculated for each of the attributes
compared between two records. These similarities are then
used to classify the compared pairs of records into matches,
non-matches, or possible matches [8]. The matching process
is often challenging because real world data is dirty [7].

Indexing is an important aspect of entity resolution, be-
cause potentially every pair of records needs to be compared,
resulting in a process that is of quadratic complexity. Index
techniques, also known as ‘blocking’ [2], are commonly used
to reduce the number of comparisons between records.

The contribution of this paper is a novel index approach
suitable for real-time entity resolution. The basic idea is to
combine similarity calculations used for approximate match-
ing with inverted index techniques as commonly used for
large Web search engines [3, 9]. This approach is consis-
tently over two orders of magnitude faster than the standard
index approach used in traditional entity resolution. An im-
portant aspect of the approach is that it allows any simi-
larity comparison function, and any encoding function for
blocking, both possibly domain specific, to be incorporated.
Most other approximate matching approaches developed in
recent times are limited to specific similarity functions (such
as edit distance, or Jaccard or cosine similarity), and there-
fore may not be suitable for entity resolution in applications
that require specific encoding and comparison functions.

2. INDEXING FOR REAL-TIME ENTITY
RESOLUTION

The objective of real-time entity resolution is to match a
stream of query records containing entities as quickly as pos-
sible to one or several (large) databases that contain records
about existing entities. The response time for matching a

[Record ID | Surname | Soundex encoding |

rl smith s530
r2 miller m460
r3 peter p360
rd myler m460
rb smyth $530
r6 millar m460
r7 smith s530
r8 miller m460

Figure 1: Example records with surname values and
their Soundex encodings, used to illustrate the two
index approaches in Figures 2 and 3.

single query record has to be as short as possible. The ap-
proach must facilitate approximate matching and efficiently
scale-up to very large databases that contain many millions
of records. The matching should generate a match score
that indicates the likelihood that a matched record in the
database refers to the same entity as the query record.

Real-time entity resolution has much in common with the
functionality of large-scale Web search engines. However,
the databases upon which entity resolution is commonly ap-
plied do not contain Web or text documents that include
a large number of terms and thus provide a rich variety of
features. Rather, these databases are made of structured
records with well defined attributes that often only contain
short strings or numbers, such as the personal details of peo-
ple (like name, address, or date of birth values).

In Section 2.1, the traditional standard blocking [2] ap-
proach to indexing for entity resolution is presented first to
illustrate the basic idea of using an inverted index for en-
tity resolution. Based on this approach, a similarity aware
inverted index approach that is suitable for real-time entity
resolution is then discussed in Section 2.2.

Both index approaches presented here are based on a stan-
dard inverted index [9]. The keys of the index are (possi-
bly encoded) attribute values, and the corresponding lists
contain the record identifiers of all records that have this
(encoded) value. Two types of function are required for
both index approaches. The first are (phonetic) encoding
functions that group, or block [2], similar attribute values
together. For string attributes, such as personal names or
street and suburb names, phonetic encodings like Soundez,
NYSIIS or Double-Metaphone are commonly used [4].

The second type of functions consists of similarity com-
parisons that calculate the similarity between two attribute
values, normally such that 1.0 corresponds to an exact match
and 0.0 to a total non-match [4]. Note that for different at-
tribute types (strings, dates, numbers, etc.) different encod-
ing and comparison functions are usually employed. Often
domain specific functions are used, for example in a date of
birth comparison a mismatch in the month or day of birth
values is commonly considered to be less severe than a mis-
match on the year of birth value.

The real-time entity resolution process as discussed here
consists of two phases. First, in the build phase, the index
is generated using a database that contains a possibly large
number of cleaned records that are assumed to refer to re-
solved entities. Omnce built, the index is queried in the second
phase with a stream of query records. These records can ei-
ther refer to an entity stored in the index, or to a new and
unknown entity. It is assumed, however, that query records

1566

$530
p360
m460

Figure 2: Standard blocking index resulting from
the example records given in Figure 1.

can contain variations and errors, or wrong, out-of-date or
missing values. Missing values can be handled by replacing
them with a special token (that is outside of the used charac-
ter set) in both database and query records. For each query
record, the matching process returns a ranked list of poten-
tial matches and their similarities with the query record. A
match is successful if one of the top ranked records refers to
the same entity as the query record.

2.1 Standard Blocking

Standard blocking is the traditional approach used for
batch-oriented entity resolution. The basic idea of this ap-
proach is to insert records in a database into blocks accord-
ing to the values of selected attributes [2], as shown in Fig-
ure 2. Each inverted index list corresponds to a block, with
the key being the (encoded) attribute value, while the corre-
sponding list contains the record identifiers of all records in
this block. Many recently developed indexing approaches for
entity resolution can be built on top of an inverted index,
including canopy clustering [6], the sorted neighbourhood
approach [7], and suffix-array blocking [1].

In the build phase of standard blocking the inverted index
data structure is generated. A separate index will be built
for each record attribute that is used in the entity resolution
process. Each record will be inserted into one list in each
inverted index according to its record attribute values. In
order to reduce computational effort, repeated computation
of the same encoding can be prevented by caching attribute
values and their encodings [5].

The query phase consists of two steps. First, the encoded
attribute values (possibly available in the encodings cache)
of the query record are used to retrieve the record identifier
lists from the corresponding blocks in the inverted index.
The union of these lists contains the identifiers of all candi-
date records. In the second step, attribute values from can-
didate records are compared with the corresponding values
of the query record. The overall similarity is calculated from
all compared attributes for each candidate record and added
to the list of matches. Finally, this list is sorted so that the
largest similarities and corresponding candidate records are
at the beginning, and the sorted list is returned.

2.2 Similarity-Aware I ndex

The basic idea of this index is to pre-calculate the similar-
ities between all unique attribute value combinations within
each block once during the build phase, so they don’t need
to be calculated for every query record.

As shown in Figure 3, three inverted index data struc-
tures are required for this approach. The record identifier
index, RI, is similar to the inverted index used in standard
blocking, but the keys in this index are the actual attribute
values and not their encodings. The block index, BI, rep-
resents the blocks. It has encoded attribute values as keys
and the actual attribute values in the corresponding inverted

millar

- /mer 0] myer 07

miller

myler |-~[mita o7 [mier Tos
peter —»X .

. ma millar | miller | myler
smith 60

EVSIY
| fomn os

p360
s530

miIIer‘ myler‘ peter‘ smith‘ smytlﬁ

' %##‘

smyth

RI -
millar

Figure 3: Similarity-aware index resulting from the
example records from Figure 1. The similarity index
is shown in the top left, the block index in the middle
right, and the record identifier index at the bottom.

index list. Each list in BI therefore contains all attribute
values that are in the same block. The similarity index, SI;
stores the calculated similarities of pairs of attribute values
that are in the same block. Specifically, for each attribute
value, it contains a list of other attribute values in the same
block and the similarities between these two values.

Algorithms 1 and 2 describe the similarity-aware index
approach. Record attributes are denoted by r.i, with r.0
being an identifier that allows unique identification of each
record. A list with key & in an inverted index X is denoted
with X[k], an empty index by {}, and an empty list by ().

An important aspect of Algorithm 1 is that the steps in
lines 6 to 17 only need to be done once for each attribute
value r.i. The processing of each r.i requires the calcula-
tion of its encoding ¢ and adding r.i into BI, the calculation
of similarities s with all other attribute values so far stored
in the same block (line 12), and storing them in the corre-
sponding similarity index lists (lines 16 and 17).

During the query process, shown in Algorithm 2, an accu-
mulator M, a data structure that contains record identifiers
and their (partial) similarities with the query record, is gen-
erated [9]. Two possible cases can occur for each attribute
of the query record q. The first case is when an attribute
value is available in the index and its similarities with other
attribute values have been calculated in the build phase. In
this case record identifiers and pre-calculated similarities are
retrieved from RI and SI, respectively, and inserted into the
accumulator M. The second case occurs when an attribute
value in the query record q is not available in the index.
This will require that the similarities need to be calculated
(lines 13 to 19), which is similar to the query phase of the
standard blocking index. The final step in the query phase is
to sort the accumulator M such that the largest similarities
are at the beginning.

The efficiency of the similarity-aware index approach de-
pends upon how many attribute values of a query record q
are already stored in the index (in which case no similari-
ties need to be calculated) compared to how many are new.
With increasing size of a data set D, and especially as D is
covering a larger portion of a population, one would assume
that a larger portion of values would be stored in the index,
thereby improving the efficiency of this index approach.

1567

Algorithm 1: Similarity-Aware Index — Build
Input:

- Data set: D

- Number of attributes of D used: n

- Encoding functions: E;,e =1...n

- Similarity comparison functions: S;,i =1...n
Output:

- Index data structures: RI, SI and BI

1: Initialise RI = {}, SI = {} and BI = {}
2: for r € D:

3: fori=1...n:

4: Append r.0 to RI[r.i]

5: if r.i ¢ SI:

6: ¢ =E;(r.)

7: b = BI[(]

8: Append r.i to b

9: BI[c]=b

10: Initialise inverted index list si = ()
11: for v € b:

12: s = S;(r.i,v)

13: Append (v, s) to si

14: oi = SI|[v]

15: Append (r.i,s) to oi

16: SI[v] = oi

17: SI[r.i] = si

Algorithm 2: Similarity-Aware Index — Query
Input:

- Query record: q

- Number of attributes of D used: n

- Index data structures: RI, SI and BI

- Encoding functions: E;,i =1...n

- Similarity comparison functions: S;,i =1...n
Output:

- Ranked list of matches: M

1 Initialise M = ()

2 fori=1...n:

3 if q.i € RI: // Case 1
4: ri = RI[q.{]

5: for r.0 € ri:

6: M[r.0] = M[r.0] + 1.0

7 si = SI[r.i]

8: for (r.i,s) € si:

9: ri = RI[r.q]

10: for r.0 € ri:

11: M[r.0] = M[r.0] + s

12: else: // Case 2
13: c¢=E;(q.7)

14: b = BI[c]

15 for v € b:

16: s = Si(q.i,v)

17: ri = RI[v]

18: for r.0 € ri:

19: M[r.0] = M[r.0] + s

20: Sort M according to similarities (largest first)

3. EXPERIMENTAL EVALUATION

The proposed similarity-aware index approach has been
compared experimentally with the standard blocking index.
The experiments were conducted on an otherwise idle Linux
server containing two Intel Xeon quad-core 2.33 GHz 64-bit
CPUs and 8 Gigabytes of main memory.

A data set containing 6,917,514 records was used for the
experiments. It contains surnames, postcodes and suburb
(town) names sourced from an Australian telephone direc-
tory, corresponding to all entries in Australian telephone

Memory usage

Average query time

Accuracy for data set with 6,917,514 records
120

8000 ['Standard Blocking —}— " standard Blocking —— " Standard blocking ——
Sim-Aware Index Sim-Aware Index Sim-Aware Index
10 b o — 100 *ﬁ;_’_
4000 |- | A T
2 S _— 80 | o
% — ® 4 o
— k=] 1)
2 — < S
@ — 3 g 6or \‘\
= 3 <
01} a0 | \#
1000 -
20
0.01
0 i . . . A . . . 0
691,751 2,767,006 4,842,260 6,917,514 691,751 2,767,006 4,842,260 6,917,514 0 1 2 3 4

Number of records in data set

Number of records in data set

Number of modifications per record

Figure 4: Summary results: Memory usage, average query time per record, and matching accuracy.

books in late 2002.' A given name attribute was added to
this data set based on a list containing 80,584 unique given
names and their frequencies, as supplied to the authors by
an Australian government agency.

Both index approaches were implemented in Python 2.5.2.
As encoding functions the Double-Metaphone [4] algorithm
was applied on the three name attributes, while for the post-
code attribute all records with the same last three digits were
inserted into the same block. The Winkler [4] approximate
string comparison function was used for the three name at-
tributes, while for postcodes the similarity was calculated as
the ratio of matching digits.

To evaluate the scalability of the two index approaches,
test data sets of four different sizes were created, containing
10%, 40%, 70% and 100% of the records in the full data set.
The full data set was split into ten sets of equal size, and
from each of these ten sets ten query records were randomly
selected, giving one hundred base query records in total. To
assess the matching quality, four additional query sets of
one hundred records each were created by modifying one,
two, three or four attribute values per record, respectively.
The modifications, while done manually, were based on the
authors’ experience with real-world name data.

For each of the data sets, the amount of main memory
used by its index was recoded. During the query phase, the
time for matching each query record was measured, as well
as whether the top ranked returned record was a true match.
Accuracy was calculated as the percentage of true matches
in each of the query sets. Experiments were repeated ten
times each and average results are reported.

4. RESULTSAND DISCUSSION

As the left graph in Figure 4 shows, the amount of memory
required by both index approaches grows sub-linearly with
the size of the data sets, because as the data sets get larger,
fewer new attribute values will occur that need to be stored.
The rate of growth for memory required depends upon the
distribution of attribute values in the data set to be indexed.
For the data sets used in the experiments, the similarity-
aware index requires less than two times as much memory
on average as the standard blocking index.

An important aspect of the similarity-aware index is its
fast query matching time. As can be seen in the middle
graph in Figure 4, this novel index approach achieves aver-
age query times below 0.1 seconds even for the index based
on the full data set containing nearly 7 million records.

"mttp://www.australiaondisc.com

1568

Over the data sets of different sizes, the query time for the
similarity-aware index is between 140 and 150 times faster
than the standard blocking index. However, for both index
approaches, the query time currently increases linearly with
the size of the indexed data sets.

The right graph in Figure 4 shows the matching accuracy
results for the full test data set with varying number of mod-
ifications per record. As can be seen, the matching accuracy
is reduced for both index approaches with an increased num-
ber of modifications. This is to be expected, as with more
modifications in a record the likelihood that another record
(with similar attribute values) becomes the best matching
record is increased. A more detailed discussion of this topic
can be found in the longer version of this paper [5].

5. CONCLUSIONSAND FUTURE WORK

A novel index approach for real-time entity resolution has
been presented and evaluated experimentally on a real-world
data set. The experiments showed that this approach can
match query records more than two orders of magnitude
faster than a basic index approach traditionally used for
entity resolution. Future work will include improving the
accuracy of the proposed approach, a proper analysis of its
time and space complexity, improving scalability and query
matching time, and conducting experiments on a variety of
other large databases.

6. REFERENCES

[1] A. Aizawa and K. Oyama. A fast linkage detection scheme for
multi-source information integration. In WIRI’05, Tokyo, 2005.

[2] R. Baxter, P. Christen, and T. Churches. A comparison of fast

blocking methods for record linkage. In ACM SIGKDD’03

Workshop on Data Cleaning, Record Linkage and Object

Consolidation, Washington DC, 2003.

R. Bayardo, Y. Ma, and R. Srikant. Scaling up all pairs

similarity search. In WWW?’07, Banff, Canada, 2007.

P. Christen. A comparison of personal name matching:

Techniques and practical issues. In Workshop on Mining

Complex Data, held ot IEEE ICDM’06, Hong Kong, 2006.

P. Christen, R. Gayler, and D. Hawking. Similarity-aware

indexing for real-time entity resolution. Technical Report

TR-CS-09-01, School of Computer Science, The Australian

National University, Canberra, Australia, 2009.

W. Cohen and J. Richman. Learning to match and cluster large

high-dimensional data sets for data integration. In ACM

SIGKDD’02, pages 475-480, Edmonton, Canada, 2002.

M. A. Hernandez and S. J. Stolfo. The merge/purge problem for

large databases. In ACM SIGMOD’95, San Jose, 1995.

W. E. Winkler. Methods for evaluating and creating data

quality. Elsevier Information Systems, 29(7):531-550, 2004.

J. Zobel and A. Moffat. Inverted files for text search engines.

ACM Computing Surveys, 38(2), 2006.

(3]
(4]

(5]

(6]

(7]
(8]
(9]

