
Similarity-Aware Indexing for Real-Time Entity Resolution

Peter Christen
School of Computer Science
Australian National University
Canberra ACT 0200, Australia
peter.christen@anu.edu.au

Ross Gayler
Scoring Solutions
Veda Advantage

Melbourne VIC 3000,
Australia

ross.gayler@vedaadvantage.com

David Hawking
Funnelback Pty Ltd

Dickson ACT 2601, Australia
david.hawking@acm.org

ABSTRACTEntity resolution, also known as data mathing or reordlinkage, is the task of identifying and mathing reords fromseveral databases that refer to the same entities. Tradition-ally, entity resolution has been applied in bath-mode andon stati databases. However, many organisations are in-reasingly faed with the hallenge of having large databasesontaining entities that need to be mathed in real-time witha stream of query reords also ontaining entities, suh thatthe best mathing reords are retrieved. Example appli-ations inlude online law enforement and national seu-rity databases, publi health surveillane and emergeny re-sponse systems, �nanial veri�ation systems, online retailstores, eGovernment servies, and digital libraries.A novel inverted index based approah for real-time entityresolution is presented in this paper. At build time, simi-larities between attribute values are omputed and storedto support the fast mathing of reords at query time. Thepresented approah di�ers from other approahes to approxi-mate query mathing in that it allows any similarity ompar-ison funtion, and any `bloking' (enoding) funtion, bothpossibly domain spei�, to be inorporated.Experimental results on a real-world database indiatethat the total size of all data strutures of this novel indexapproah grows sub-linearly with the size of the database,and that it allows mathing of query reords in sub-seondtime, more than two orders of magnitude faster than a tra-ditional entity resolution index approah. The interestedreader is referred to the longer version of this paper [5℄.Categories and Subjet Desriptors: H.3.3 [Informa-tion Systems℄: Information Storage and Retrieval|Infor-mation Searh and Retrieval ; H.3.1 [Information Systems℄:Information Storage and Retrieval|Content Analysis andIndexing.General Terms: Algorithms, experimentation, performane.Keywords: Data mathing, reord linkage, salability, sim-ilarity query, approximate string mathing, inverted index-ing, phoneti enoding.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’09, November 2–6, 2009, Hong Kong, China.
Copyright 2009 ACM 978-1-60558-512-3/09/11 ...$10.00.

1. INTRODUCTIONInreasingly, many appliations that deal with data man-agement and analysis require data from di�erent soures tobe mathed and aggregated before they an be used for fur-ther proessing. The aim of entity resolution is to identifyand math all reords that refer to the same entities. Teh-niques for mathing reords that orrespond to the sameentities have traditionally been applied in the health se-tor and within the ensus [8℄. Inreasingly, however, entityresolution is now being used within and between many or-ganisations in both the publi and private setors.Beause real-world data rarely ontain unique entity iden-ti�ers aross all the databases to be mathed, most entityresolution approahes ompare reords using the informa-tion available in the databases that an partially identifyentities, suh as their names, address details, or dates ofbirth. A similarity is alulated for eah of the attributesompared between two reords. These similarities are thenused to lassify the ompared pairs of reords into mathes,non-mathes, or possible mathes [8℄. The mathing proessis often hallenging beause real world data is dirty [7℄.Indexing is an important aspet of entity resolution, be-ause potentially every pair of reords needs to be ompared,resulting in a proess that is of quadrati omplexity. Indextehniques, also known as `bloking' [2℄, are ommonly usedto redue the number of omparisons between reords.The ontribution of this paper is a novel index approahsuitable for real-time entity resolution. The basi idea is toombine similarity alulations used for approximate math-ing with inverted index tehniques as ommonly used forlarge Web searh engines [3, 9℄. This approah is onsis-tently over two orders of magnitude faster than the standardindex approah used in traditional entity resolution. An im-portant aspet of the approah is that it allows any simi-larity omparison funtion, and any enoding funtion forbloking, both possibly domain spei�, to be inorporated.Most other approximate mathing approahes developed inreent times are limited to spei� similarity funtions (suhas edit distane, or Jaard or osine similarity), and there-fore may not be suitable for entity resolution in appliationsthat require spei� enoding and omparison funtions.
2. INDEXING FOR REAL-TIME ENTITY

RESOLUTIONThe objetive of real-time entity resolution is to math astream of query reords ontaining entities as quikly as pos-sible to one or several (large) databases that ontain reordsabout existing entities. The response time for mathing a
1565

Reord ID Surname Soundex enodingr1 smith s530r2 miller m460r3 peter p360r4 myler m460r5 smyth s530r6 millar m460r7 smith s530r8 miller m460Figure 1: Example reords with surname values andtheir Soundex enodings, used to illustrate the twoindex approahes in Figures 2 and 3.single query reord has to be as short as possible. The ap-proah must failitate approximate mathing and eÆientlysale-up to very large databases that ontain many millionsof reords. The mathing should generate a math sorethat indiates the likelihood that a mathed reord in thedatabase refers to the same entity as the query reord.Real-time entity resolution has muh in ommon with thefuntionality of large-sale Web searh engines. However,the databases upon whih entity resolution is ommonly ap-plied do not ontain Web or text douments that inludea large number of terms and thus provide a rih variety offeatures. Rather, these databases are made of struturedreords with well de�ned attributes that often only ontainshort strings or numbers, suh as the personal details of peo-ple (like name, address, or date of birth values).In Setion 2.1, the traditional standard bloking [2℄ ap-proah to indexing for entity resolution is presented �rst toillustrate the basi idea of using an inverted index for en-tity resolution. Based on this approah, a similarity awareinverted index approah that is suitable for real-time entityresolution is then disussed in Setion 2.2.Both index approahes presented here are based on a stan-dard inverted index [9℄. The keys of the index are (possi-bly enoded) attribute values, and the orresponding listsontain the reord identi�ers of all reords that have this(enoded) value. Two types of funtion are required forboth index approahes. The �rst are (phoneti) enodingfuntions that group, or blok [2℄, similar attribute valuestogether. For string attributes, suh as personal names orstreet and suburb names, phoneti enodings like Soundex,NYSIIS or Double-Metaphone are ommonly used [4℄.The seond type of funtions onsists of similarity om-parisons that alulate the similarity between two attributevalues, normally suh that 1:0 orresponds to an exat mathand 0:0 to a total non-math [4℄. Note that for di�erent at-tribute types (strings, dates, numbers, et.) di�erent enod-ing and omparison funtions are usually employed. Oftendomain spei� funtions are used, for example in a date ofbirth omparison a mismath in the month or day of birthvalues is ommonly onsidered to be less severe than a mis-math on the year of birth value.The real-time entity resolution proess as disussed hereonsists of two phases. First, in the build phase, the indexis generated using a database that ontains a possibly largenumber of leaned reords that are assumed to refer to re-solved entities. One built, the index is queried in the seondphase with a stream of query reords. These reords an ei-ther refer to an entity stored in the index, or to a new andunknown entity. It is assumed, however, that query reords

m460

p360

s530

r3

r1 r5 r7

r2 r4 r6 r8Figure 2: Standard bloking index resulting fromthe example reords given in Figure 1.an ontain variations and errors, or wrong, out-of-date ormissing values. Missing values an be handled by replaingthem with a speial token (that is outside of the used hara-ter set) in both database and query reords. For eah queryreord, the mathing proess returns a ranked list of poten-tial mathes and their similarities with the query reord. Amath is suessful if one of the top ranked reords refers tothe same entity as the query reord.
2.1 Standard BlockingStandard bloking is the traditional approah used forbath-oriented entity resolution. The basi idea of this ap-proah is to insert reords in a database into bloks aord-ing to the values of seleted attributes [2℄, as shown in Fig-ure 2. Eah inverted index list orresponds to a blok, withthe key being the (enoded) attribute value, while the orre-sponding list ontains the reord identi�ers of all reords inthis blok. Many reently developed indexing approahes forentity resolution an be built on top of an inverted index,inluding anopy lustering [6℄, the sorted neighbourhoodapproah [7℄, and suÆx-array bloking [1℄.In the build phase of standard bloking the inverted indexdata struture is generated. A separate index will be builtfor eah reord attribute that is used in the entity resolutionproess. Eah reord will be inserted into one list in eahinverted index aording to its reord attribute values. Inorder to redue omputational e�ort, repeated omputationof the same enoding an be prevented by ahing attributevalues and their enodings [5℄.The query phase onsists of two steps. First, the enodedattribute values (possibly available in the enodings ahe)of the query reord are used to retrieve the reord identi�erlists from the orresponding bloks in the inverted index.The union of these lists ontains the identi�ers of all andi-date reords. In the seond step, attribute values from an-didate reords are ompared with the orresponding valuesof the query reord. The overall similarity is alulated fromall ompared attributes for eah andidate reord and addedto the list of mathes. Finally, this list is sorted so that thelargest similarities and orresponding andidate reords areat the beginning, and the sorted list is returned.
2.2 Similarity-Aware IndexThe basi idea of this index is to pre-alulate the similar-ities between all unique attribute value ombinations withineah blok one during the build phase, so they don't needto be alulated for every query reord.As shown in Figure 3, three inverted index data stru-tures are required for this approah. The reord identi�erindex, RI, is similar to the inverted index used in standardbloking, but the keys in this index are the atual attributevalues and not their enodings. The blok index, BI, rep-resents the bloks. It has enoded attribute values as keysand the atual attribute values in the orresponding inverted

1566

peter

smyth smith 0.9

smith smyth 0.9

p360 peter

m460 miller mylermillar

s530 smith smyth

miller 0.9 mylermillar 0.8

miller 0.9millar myler 0.7

miller0.7millar 0.8myler

r2 r5r1

r7

r3r4

r8

r6

millar miller myler peter smith smyth
RI

SI

BI

Figure 3: Similarity-aware index resulting from theexample reords from Figure 1. The similarity indexis shown in the top left, the blok index in the middleright, and the reord identi�er index at the bottom.index list. Eah list in BI therefore ontains all attributevalues that are in the same blok. The similarity index, SI,stores the alulated similarities of pairs of attribute valuesthat are in the same blok. Spei�ally, for eah attributevalue, it ontains a list of other attribute values in the sameblok and the similarities between these two values.Algorithms 1 and 2 desribe the similarity-aware indexapproah. Reord attributes are denoted by r:i, with r:0being an identi�er that allows unique identi�ation of eahreord. A list with key k in an inverted index X is denotedwith X[k℄, an empty index by fg, and an empty list by ().An important aspet of Algorithm 1 is that the steps inlines 6 to 17 only need to be done one for eah attributevalue r:i. The proessing of eah r:i requires the alula-tion of its enoding and adding r:i into BI, the alulationof similarities s with all other attribute values so far storedin the same blok (line 12), and storing them in the orre-sponding similarity index lists (lines 16 and 17).During the query proess, shown in Algorithm 2, an au-mulatorM, a data struture that ontains reord identi�ersand their (partial) similarities with the query reord, is gen-erated [9℄. Two possible ases an our for eah attributeof the query reord q. The �rst ase is when an attributevalue is available in the index and its similarities with otherattribute values have been alulated in the build phase. Inthis ase reord identi�ers and pre-alulated similarities areretrieved from RI and SI, respetively, and inserted into theaumulator M. The seond ase ours when an attributevalue in the query reord q is not available in the index.This will require that the similarities need to be alulated(lines 13 to 19), whih is similar to the query phase of thestandard bloking index. The �nal step in the query phase isto sort the aumulator M suh that the largest similaritiesare at the beginning.The eÆieny of the similarity-aware index approah de-pends upon how many attribute values of a query reord qare already stored in the index (in whih ase no similari-ties need to be alulated) ompared to how many are new.With inreasing size of a data set D, and espeially as D isovering a larger portion of a population, one would assumethat a larger portion of values would be stored in the index,thereby improving the eÆieny of this index approah.

Algorithm 1: Similarity-Aware Index { BuildInput:- Data set: D- Number of attributes of D used: n- Enoding funtions: Ei; i = 1 : : : n- Similarity omparison funtions: Si; i = 1 : : : nOutput:- Index data strutures: RI, SI and BI1: Initialise RI = fg, SI = fg and BI = fg2: for r 2 D:3: for i = 1 : : : n:4: Append r:0 to RI[r:i℄5: if r:i 62 SI:6: = Ei(r:i)7: b = BI[℄8: Append r:i to b9: BI[℄ = b10: Initialise inverted index list si = ()11: for v 2 b:12: s = Si(r:i; v)13: Append (v; s) to si14: oi = SI[v℄15: Append (r:i; s) to oi16: SI[v℄ = oi17: SI[r:i℄ = siAlgorithm 2: Similarity-Aware Index { QueryInput:- Query reord: q- Number of attributes of D used: n- Index data strutures: RI, SI and BI- Enoding funtions: Ei; i = 1 : : : n- Similarity omparison funtions: Si; i = 1 : : : nOutput:- Ranked list of mathes: M1: Initialise M = ()2: for i = 1 : : : n:3: if q:i 2 RI: // Case 14: ri = RI[q:i℄5: for r:0 2 ri:6: M[r:0℄ = M[r:0℄ + 1:07: si = SI[r:i℄8: for (r:i; s) 2 si:9: ri = RI[r:i℄10: for r:0 2 ri:11: M[r:0℄ = M[r:0℄ + s12: else: // Case 213: = Ei(q:i)14: b = BI[℄15 for v 2 b:16: s = Si(q:i; v)17: ri = RI[v℄18: for r:0 2 ri:19: M[r:0℄ = M[r:0℄ + s20: Sort M aording to similarities (largest �rst)
3. EXPERIMENTAL EVALUATIONThe proposed similarity-aware index approah has beenompared experimentally with the standard bloking index.The experiments were onduted on an otherwise idle Linuxserver ontaining two Intel Xeon quad-ore 2.33 GHz 64-bitCPUs and 8 Gigabytes of main memory.A data set ontaining 6,917,514 reords was used for theexperiments. It ontains surnames, postodes and suburb(town) names soured from an Australian telephone dire-tory, orresponding to all entries in Australian telephone

1567

8000

4000

1000

400
6,917,5144,842,2602,767,006691,751

M
B

yt
es

Number of records in data set

Memory usage

Standard Blocking
Sim-Aware Index

 0.01

 0.1

 1

 10

6,917,5144,842,2602,767,006691,751

S
ec

on
ds

Number of records in data set

Average query time

Standard Blocking
Sim-Aware Index

 0

 20

 40

 60

 80

 100

 120

43210

A
cc

ur
ac

y

Number of modifications per record

Accuracy for data set with 6,917,514 records

Standard blocking
Sim-Aware Index

Figure 4: Summary results: Memory usage, average query time per reord, and mathing auray.books in late 2002.1 A given name attribute was added tothis data set based on a list ontaining 80,584 unique givennames and their frequenies, as supplied to the authors byan Australian government ageny.Both index approahes were implemented in Python 2.5.2.As enoding funtions the Double-Metaphone [4℄ algorithmwas applied on the three name attributes, while for the post-ode attribute all reords with the same last three digits wereinserted into the same blok. The Winkler [4℄ approximatestring omparison funtion was used for the three name at-tributes, while for postodes the similarity was alulated asthe ratio of mathing digits.To evaluate the salability of the two index approahes,test data sets of four di�erent sizes were reated, ontaining10%, 40%, 70% and 100% of the reords in the full data set.The full data set was split into ten sets of equal size, andfrom eah of these ten sets ten query reords were randomlyseleted, giving one hundred base query reords in total. Toassess the mathing quality, four additional query sets ofone hundred reords eah were reated by modifying one,two, three or four attribute values per reord, respetively.The modi�ations, while done manually, were based on theauthors' experiene with real-world name data.For eah of the data sets, the amount of main memoryused by its index was reoded. During the query phase, thetime for mathing eah query reord was measured, as wellas whether the top ranked returned reord was a true math.Auray was alulated as the perentage of true mathesin eah of the query sets. Experiments were repeated tentimes eah and average results are reported.
4. RESULTS AND DISCUSSIONAs the left graph in Figure 4 shows, the amount of memoryrequired by both index approahes grows sub-linearly withthe size of the data sets, beause as the data sets get larger,fewer new attribute values will our that need to be stored.The rate of growth for memory required depends upon thedistribution of attribute values in the data set to be indexed.For the data sets used in the experiments, the similarity-aware index requires less than two times as muh memoryon average as the standard bloking index.An important aspet of the similarity-aware index is itsfast query mathing time. As an be seen in the middlegraph in Figure 4, this novel index approah ahieves aver-age query times below 0:1 seonds even for the index basedon the full data set ontaining nearly 7 million reords.1http://www.australiaondis.om

Over the data sets of di�erent sizes, the query time for thesimilarity-aware index is between 140 and 150 times fasterthan the standard bloking index. However, for both indexapproahes, the query time urrently inreases linearly withthe size of the indexed data sets.The right graph in Figure 4 shows the mathing aurayresults for the full test data set with varying number of mod-i�ations per reord. As an be seen, the mathing aurayis redued for both index approahes with an inreased num-ber of modi�ations. This is to be expeted, as with moremodi�ations in a reord the likelihood that another reord(with similar attribute values) beomes the best mathingreord is inreased. A more detailed disussion of this topian be found in the longer version of this paper [5℄.
5. CONCLUSIONS AND FUTURE WORKA novel index approah for real-time entity resolution hasbeen presented and evaluated experimentally on a real-worlddata set. The experiments showed that this approah anmath query reords more than two orders of magnitudefaster than a basi index approah traditionally used forentity resolution. Future work will inlude improving theauray of the proposed approah, a proper analysis of itstime and spae omplexity, improving salability and querymathing time, and onduting experiments on a variety ofother large databases.
6. REFERENCES[1℄ A. Aizawa and K. Oyama. A fast linkage detetion sheme formulti-soure information integration. In WIRI'05, Tokyo, 2005.[2℄ R. Baxter, P. Christen, and T. Churhes. A omparison of fastbloking methods for reord linkage. In ACM SIGKDD'03Workshop on Data Cleaning, Reord Linkage and ObjetConsolidation, Washington DC, 2003.[3℄ R. Bayardo, Y. Ma, and R. Srikant. Saling up all pairssimilarity searh. In WWW'07, Ban�, Canada, 2007.[4℄ P. Christen. A omparison of personal name mathing:Tehniques and pratial issues. In Workshop on MiningComplex Data, held at IEEE ICDM'06, Hong Kong, 2006.[5℄ P. Christen, R. Gayler, and D. Hawking. Similarity-awareindexing for real-time entity resolution. Tehnial ReportTR-CS-09-01, Shool of Computer Siene, The AustralianNational University, Canberra, Australia, 2009.[6℄ W. Cohen and J. Rihman. Learning to math and luster largehigh-dimensional data sets for data integration. In ACMSIGKDD'02, pages 475{480, Edmonton, Canada, 2002.[7℄ M. A. Hernandez and S. J. Stolfo. The merge/purge problem forlarge databases. In ACM SIGMOD'95, San Jose, 1995.[8℄ W. E. Winkler. Methods for evaluating and reating dataquality. Elsevier Information Systems, 29(7):531{550, 2004.[9℄ J. Zobel and A. Mo�at. Inverted �les for text searh engines.ACM Computing Surveys, 38(2), 2006.

1568

