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ABSTRACTEntity resolution, also known as data mat
hing or re
ordlinkage, is the task of identifying and mat
hing re
ords fromseveral databases that refer to the same entities. Tradition-ally, entity resolution has been applied in bat
h-mode andon stati
 databases. However, many organisations are in-
reasingly fa
ed with the 
hallenge of having large databases
ontaining entities that need to be mat
hed in real-time witha stream of query re
ords also 
ontaining entities, su
h thatthe best mat
hing re
ords are retrieved. Example appli-
ations in
lude online law enfor
ement and national se
u-rity databases, publi
 health surveillan
e and emergen
y re-sponse systems, �nan
ial veri�
ation systems, online retailstores, eGovernment servi
es, and digital libraries.A novel inverted index based approa
h for real-time entityresolution is presented in this paper. At build time, simi-larities between attribute values are 
omputed and storedto support the fast mat
hing of re
ords at query time. Thepresented approa
h di�ers from other approa
hes to approxi-mate query mat
hing in that it allows any similarity 
ompar-ison fun
tion, and any `blo
king' (en
oding) fun
tion, bothpossibly domain spe
i�
, to be in
orporated.Experimental results on a real-world database indi
atethat the total size of all data stru
tures of this novel indexapproa
h grows sub-linearly with the size of the database,and that it allows mat
hing of query re
ords in sub-se
ondtime, more than two orders of magnitude faster than a tra-ditional entity resolution index approa
h. The interestedreader is referred to the longer version of this paper [5℄.Categories and Subje
t Des
riptors: H.3.3 [Informa-tion Systems℄: Information Storage and Retrieval|Infor-mation Sear
h and Retrieval ; H.3.1 [Information Systems℄:Information Storage and Retrieval|Content Analysis andIndexing.General Terms: Algorithms, experimentation, performan
e.Keywords: Data mat
hing, re
ord linkage, s
alability, sim-ilarity query, approximate string mat
hing, inverted index-ing, phoneti
 en
oding.
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1. INTRODUCTIONIn
reasingly, many appli
ations that deal with data man-agement and analysis require data from di�erent sour
es tobe mat
hed and aggregated before they 
an be used for fur-ther pro
essing. The aim of entity resolution is to identifyand mat
h all re
ords that refer to the same entities. Te
h-niques for mat
hing re
ords that 
orrespond to the sameentities have traditionally been applied in the health se
-tor and within the 
ensus [8℄. In
reasingly, however, entityresolution is now being used within and between many or-ganisations in both the publi
 and private se
tors.Be
ause real-world data rarely 
ontain unique entity iden-ti�ers a
ross all the databases to be mat
hed, most entityresolution approa
hes 
ompare re
ords using the informa-tion available in the databases that 
an partially identifyentities, su
h as their names, address details, or dates ofbirth. A similarity is 
al
ulated for ea
h of the attributes
ompared between two re
ords. These similarities are thenused to 
lassify the 
ompared pairs of re
ords into mat
hes,non-mat
hes, or possible mat
hes [8℄. The mat
hing pro
essis often 
hallenging be
ause real world data is dirty [7℄.Indexing is an important aspe
t of entity resolution, be-
ause potentially every pair of re
ords needs to be 
ompared,resulting in a pro
ess that is of quadrati
 
omplexity. Indexte
hniques, also known as `blo
king' [2℄, are 
ommonly usedto redu
e the number of 
omparisons between re
ords.The 
ontribution of this paper is a novel index approa
hsuitable for real-time entity resolution. The basi
 idea is to
ombine similarity 
al
ulations used for approximate mat
h-ing with inverted index te
hniques as 
ommonly used forlarge Web sear
h engines [3, 9℄. This approa
h is 
onsis-tently over two orders of magnitude faster than the standardindex approa
h used in traditional entity resolution. An im-portant aspe
t of the approa
h is that it allows any simi-larity 
omparison fun
tion, and any en
oding fun
tion forblo
king, both possibly domain spe
i�
, to be in
orporated.Most other approximate mat
hing approa
hes developed inre
ent times are limited to spe
i�
 similarity fun
tions (su
has edit distan
e, or Ja

ard or 
osine similarity), and there-fore may not be suitable for entity resolution in appli
ationsthat require spe
i�
 en
oding and 
omparison fun
tions.
2. INDEXING FOR REAL-TIME ENTITY

RESOLUTIONThe obje
tive of real-time entity resolution is to mat
h astream of query re
ords 
ontaining entities as qui
kly as pos-sible to one or several (large) databases that 
ontain re
ordsabout existing entities. The response time for mat
hing a
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Re
ord ID Surname Soundex en
odingr1 smith s530r2 miller m460r3 peter p360r4 myler m460r5 smyth s530r6 millar m460r7 smith s530r8 miller m460Figure 1: Example re
ords with surname values andtheir Soundex en
odings, used to illustrate the twoindex approa
hes in Figures 2 and 3.single query re
ord has to be as short as possible. The ap-proa
h must fa
ilitate approximate mat
hing and eÆ
ientlys
ale-up to very large databases that 
ontain many millionsof re
ords. The mat
hing should generate a mat
h s
orethat indi
ates the likelihood that a mat
hed re
ord in thedatabase refers to the same entity as the query re
ord.Real-time entity resolution has mu
h in 
ommon with thefun
tionality of large-s
ale Web sear
h engines. However,the databases upon whi
h entity resolution is 
ommonly ap-plied do not 
ontain Web or text do
uments that in
ludea large number of terms and thus provide a ri
h variety offeatures. Rather, these databases are made of stru
turedre
ords with well de�ned attributes that often only 
ontainshort strings or numbers, su
h as the personal details of peo-ple (like name, address, or date of birth values).In Se
tion 2.1, the traditional standard blo
king [2℄ ap-proa
h to indexing for entity resolution is presented �rst toillustrate the basi
 idea of using an inverted index for en-tity resolution. Based on this approa
h, a similarity awareinverted index approa
h that is suitable for real-time entityresolution is then dis
ussed in Se
tion 2.2.Both index approa
hes presented here are based on a stan-dard inverted index [9℄. The keys of the index are (possi-bly en
oded) attribute values, and the 
orresponding lists
ontain the re
ord identi�ers of all re
ords that have this(en
oded) value. Two types of fun
tion are required forboth index approa
hes. The �rst are (phoneti
) en
odingfun
tions that group, or blo
k [2℄, similar attribute valuestogether. For string attributes, su
h as personal names orstreet and suburb names, phoneti
 en
odings like Soundex,NYSIIS or Double-Metaphone are 
ommonly used [4℄.The se
ond type of fun
tions 
onsists of similarity 
om-parisons that 
al
ulate the similarity between two attributevalues, normally su
h that 1:0 
orresponds to an exa
t mat
hand 0:0 to a total non-mat
h [4℄. Note that for di�erent at-tribute types (strings, dates, numbers, et
.) di�erent en
od-ing and 
omparison fun
tions are usually employed. Oftendomain spe
i�
 fun
tions are used, for example in a date ofbirth 
omparison a mismat
h in the month or day of birthvalues is 
ommonly 
onsidered to be less severe than a mis-mat
h on the year of birth value.The real-time entity resolution pro
ess as dis
ussed here
onsists of two phases. First, in the build phase, the indexis generated using a database that 
ontains a possibly largenumber of 
leaned re
ords that are assumed to refer to re-solved entities. On
e built, the index is queried in the se
ondphase with a stream of query re
ords. These re
ords 
an ei-ther refer to an entity stored in the index, or to a new andunknown entity. It is assumed, however, that query re
ords

m460

p360

s530

r3

r1 r5 r7

r2 r4 r6 r8Figure 2: Standard blo
king index resulting fromthe example re
ords given in Figure 1.
an 
ontain variations and errors, or wrong, out-of-date ormissing values. Missing values 
an be handled by repla
ingthem with a spe
ial token (that is outside of the used 
hara
-ter set) in both database and query re
ords. For ea
h queryre
ord, the mat
hing pro
ess returns a ranked list of poten-tial mat
hes and their similarities with the query re
ord. Amat
h is su

essful if one of the top ranked re
ords refers tothe same entity as the query re
ord.
2.1 Standard BlockingStandard blo
king is the traditional approa
h used forbat
h-oriented entity resolution. The basi
 idea of this ap-proa
h is to insert re
ords in a database into blo
ks a

ord-ing to the values of sele
ted attributes [2℄, as shown in Fig-ure 2. Ea
h inverted index list 
orresponds to a blo
k, withthe key being the (en
oded) attribute value, while the 
orre-sponding list 
ontains the re
ord identi�ers of all re
ords inthis blo
k. Many re
ently developed indexing approa
hes forentity resolution 
an be built on top of an inverted index,in
luding 
anopy 
lustering [6℄, the sorted neighbourhoodapproa
h [7℄, and suÆx-array blo
king [1℄.In the build phase of standard blo
king the inverted indexdata stru
ture is generated. A separate index will be builtfor ea
h re
ord attribute that is used in the entity resolutionpro
ess. Ea
h re
ord will be inserted into one list in ea
hinverted index a

ording to its re
ord attribute values. Inorder to redu
e 
omputational e�ort, repeated 
omputationof the same en
oding 
an be prevented by 
a
hing attributevalues and their en
odings [5℄.The query phase 
onsists of two steps. First, the en
odedattribute values (possibly available in the en
odings 
a
he)of the query re
ord are used to retrieve the re
ord identi�erlists from the 
orresponding blo
ks in the inverted index.The union of these lists 
ontains the identi�ers of all 
andi-date re
ords. In the se
ond step, attribute values from 
an-didate re
ords are 
ompared with the 
orresponding valuesof the query re
ord. The overall similarity is 
al
ulated fromall 
ompared attributes for ea
h 
andidate re
ord and addedto the list of mat
hes. Finally, this list is sorted so that thelargest similarities and 
orresponding 
andidate re
ords areat the beginning, and the sorted list is returned.
2.2 Similarity-Aware IndexThe basi
 idea of this index is to pre-
al
ulate the similar-ities between all unique attribute value 
ombinations withinea
h blo
k on
e during the build phase, so they don't needto be 
al
ulated for every query re
ord.As shown in Figure 3, three inverted index data stru
-tures are required for this approa
h. The re
ord identi�erindex, RI, is similar to the inverted index used in standardblo
king, but the keys in this index are the a
tual attributevalues and not their en
odings. The blo
k index, BI, rep-resents the blo
ks. It has en
oded attribute values as keysand the a
tual attribute values in the 
orresponding inverted
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Figure 3: Similarity-aware index resulting from theexample re
ords from Figure 1. The similarity indexis shown in the top left, the blo
k index in the middleright, and the re
ord identi�er index at the bottom.index list. Ea
h list in BI therefore 
ontains all attributevalues that are in the same blo
k. The similarity index, SI,stores the 
al
ulated similarities of pairs of attribute valuesthat are in the same blo
k. Spe
i�
ally, for ea
h attributevalue, it 
ontains a list of other attribute values in the sameblo
k and the similarities between these two values.Algorithms 1 and 2 des
ribe the similarity-aware indexapproa
h. Re
ord attributes are denoted by r:i, with r:0being an identi�er that allows unique identi�
ation of ea
hre
ord. A list with key k in an inverted index X is denotedwith X[k℄, an empty index by fg, and an empty list by ().An important aspe
t of Algorithm 1 is that the steps inlines 6 to 17 only need to be done on
e for ea
h attributevalue r:i. The pro
essing of ea
h r:i requires the 
al
ula-tion of its en
oding 
 and adding r:i into BI, the 
al
ulationof similarities s with all other attribute values so far storedin the same blo
k (line 12), and storing them in the 
orre-sponding similarity index lists (lines 16 and 17).During the query pro
ess, shown in Algorithm 2, an a

u-mulatorM, a data stru
ture that 
ontains re
ord identi�ersand their (partial) similarities with the query re
ord, is gen-erated [9℄. Two possible 
ases 
an o

ur for ea
h attributeof the query re
ord q. The �rst 
ase is when an attributevalue is available in the index and its similarities with otherattribute values have been 
al
ulated in the build phase. Inthis 
ase re
ord identi�ers and pre-
al
ulated similarities areretrieved from RI and SI, respe
tively, and inserted into thea

umulator M. The se
ond 
ase o

urs when an attributevalue in the query re
ord q is not available in the index.This will require that the similarities need to be 
al
ulated(lines 13 to 19), whi
h is similar to the query phase of thestandard blo
king index. The �nal step in the query phase isto sort the a

umulator M su
h that the largest similaritiesare at the beginning.The eÆ
ien
y of the similarity-aware index approa
h de-pends upon how many attribute values of a query re
ord qare already stored in the index (in whi
h 
ase no similari-ties need to be 
al
ulated) 
ompared to how many are new.With in
reasing size of a data set D, and espe
ially as D is
overing a larger portion of a population, one would assumethat a larger portion of values would be stored in the index,thereby improving the eÆ
ien
y of this index approa
h.

Algorithm 1: Similarity-Aware Index { BuildInput:- Data set: D- Number of attributes of D used: n- En
oding fun
tions: Ei; i = 1 : : : n- Similarity 
omparison fun
tions: Si; i = 1 : : : nOutput:- Index data stru
tures: RI, SI and BI1: Initialise RI = fg, SI = fg and BI = fg2: for r 2 D:3: for i = 1 : : : n:4: Append r:0 to RI[r:i℄5: if r:i 62 SI:6: 
 = Ei(r:i)7: b = BI[
℄8: Append r:i to b9: BI[
℄ = b10: Initialise inverted index list si = ()11: for v 2 b:12: s = Si(r:i; v)13: Append (v; s) to si14: oi = SI[v℄15: Append (r:i; s) to oi16: SI[v℄ = oi17: SI[r:i℄ = siAlgorithm 2: Similarity-Aware Index { QueryInput:- Query re
ord: q- Number of attributes of D used: n- Index data stru
tures: RI, SI and BI- En
oding fun
tions: Ei; i = 1 : : : n- Similarity 
omparison fun
tions: Si; i = 1 : : : nOutput:- Ranked list of mat
hes: M1: Initialise M = ()2: for i = 1 : : : n:3: if q:i 2 RI: // Case 14: ri = RI[q:i℄5: for r:0 2 ri:6: M[r:0℄ = M[r:0℄ + 1:07: si = SI[r:i℄8: for (r:i; s) 2 si:9: ri = RI[r:i℄10: for r:0 2 ri:11: M[r:0℄ = M[r:0℄ + s12: else: // Case 213: 
 = Ei(q:i)14: b = BI[
℄15 for v 2 b:16: s = Si(q:i; v)17: ri = RI[v℄18: for r:0 2 ri:19: M[r:0℄ = M[r:0℄ + s20: Sort M a

ording to similarities (largest �rst)
3. EXPERIMENTAL EVALUATIONThe proposed similarity-aware index approa
h has been
ompared experimentally with the standard blo
king index.The experiments were 
ondu
ted on an otherwise idle Linuxserver 
ontaining two Intel Xeon quad-
ore 2.33 GHz 64-bitCPUs and 8 Gigabytes of main memory.A data set 
ontaining 6,917,514 re
ords was used for theexperiments. It 
ontains surnames, post
odes and suburb(town) names sour
ed from an Australian telephone dire
-tory, 
orresponding to all entries in Australian telephone
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Figure 4: Summary results: Memory usage, average query time per re
ord, and mat
hing a

ura
y.books in late 2002.1 A given name attribute was added tothis data set based on a list 
ontaining 80,584 unique givennames and their frequen
ies, as supplied to the authors byan Australian government agen
y.Both index approa
hes were implemented in Python 2.5.2.As en
oding fun
tions the Double-Metaphone [4℄ algorithmwas applied on the three name attributes, while for the post-
ode attribute all re
ords with the same last three digits wereinserted into the same blo
k. The Winkler [4℄ approximatestring 
omparison fun
tion was used for the three name at-tributes, while for post
odes the similarity was 
al
ulated asthe ratio of mat
hing digits.To evaluate the s
alability of the two index approa
hes,test data sets of four di�erent sizes were 
reated, 
ontaining10%, 40%, 70% and 100% of the re
ords in the full data set.The full data set was split into ten sets of equal size, andfrom ea
h of these ten sets ten query re
ords were randomlysele
ted, giving one hundred base query re
ords in total. Toassess the mat
hing quality, four additional query sets ofone hundred re
ords ea
h were 
reated by modifying one,two, three or four attribute values per re
ord, respe
tively.The modi�
ations, while done manually, were based on theauthors' experien
e with real-world name data.For ea
h of the data sets, the amount of main memoryused by its index was re
oded. During the query phase, thetime for mat
hing ea
h query re
ord was measured, as wellas whether the top ranked returned re
ord was a true mat
h.A

ura
y was 
al
ulated as the per
entage of true mat
hesin ea
h of the query sets. Experiments were repeated tentimes ea
h and average results are reported.
4. RESULTS AND DISCUSSIONAs the left graph in Figure 4 shows, the amount of memoryrequired by both index approa
hes grows sub-linearly withthe size of the data sets, be
ause as the data sets get larger,fewer new attribute values will o

ur that need to be stored.The rate of growth for memory required depends upon thedistribution of attribute values in the data set to be indexed.For the data sets used in the experiments, the similarity-aware index requires less than two times as mu
h memoryon average as the standard blo
king index.An important aspe
t of the similarity-aware index is itsfast query mat
hing time. As 
an be seen in the middlegraph in Figure 4, this novel index approa
h a
hieves aver-age query times below 0:1 se
onds even for the index basedon the full data set 
ontaining nearly 7 million re
ords.1http://www.australiaondis
.
om

Over the data sets of di�erent sizes, the query time for thesimilarity-aware index is between 140 and 150 times fasterthan the standard blo
king index. However, for both indexapproa
hes, the query time 
urrently in
reases linearly withthe size of the indexed data sets.The right graph in Figure 4 shows the mat
hing a

ura
yresults for the full test data set with varying number of mod-i�
ations per re
ord. As 
an be seen, the mat
hing a

ura
yis redu
ed for both index approa
hes with an in
reased num-ber of modi�
ations. This is to be expe
ted, as with moremodi�
ations in a re
ord the likelihood that another re
ord(with similar attribute values) be
omes the best mat
hingre
ord is in
reased. A more detailed dis
ussion of this topi

an be found in the longer version of this paper [5℄.
5. CONCLUSIONS AND FUTURE WORKA novel index approa
h for real-time entity resolution hasbeen presented and evaluated experimentally on a real-worlddata set. The experiments showed that this approa
h 
anmat
h query re
ords more than two orders of magnitudefaster than a basi
 index approa
h traditionally used forentity resolution. Future work will in
lude improving thea

ura
y of the proposed approa
h, a proper analysis of itstime and spa
e 
omplexity, improving s
alability and querymat
hing time, and 
ondu
ting experiments on a variety ofother large databases.
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