Automatic identification of the most important elements in an

XML collection
Alexander Krumpholz Amir Hadad
ICT Centre RSCS
CSIRO Australian National University

ACT 2601 Australia
krumpholz@acm.org
Nina Studeny

University of Applied Science
Technikum Wien
A-1200 Vienna, Austria

nina.studeny @ gmail.com

ACT 0200 Australia
amir.hadad @ anu.edu.au

Tom Gedeon

RSCS
Australian National University
ACT 0200 Australia

tom.gedeon@anu.edu.au

David Hawking

Funnelback and Australian National University
Canberra, Australia

david.hawking @acm.org

Abstract An important problem in XML retrieval is
determining the most useful element types to retrieve —
e.g. book, chapter, section, paragraph or caption. An
automated system for doing this could be based on fea-
tures of element types related to size, depth, frequency
of occurrence, etc. We consider a large number of such
features and assess their usefulness in predicting the
types of elements judged relevant in INEX evaluations
for the IEEE and Wikipedia 2006 corpora. For each
feature we automatically assign Useful / Not-Useful la-
bels to element types using Fuzzy c-Means Clustering.
We then rank the features by the accuracy with which
they predict the manual judgments. We find strong over-
lap between the top-ten most predictive features for the
two collections and that seven features achieve high av-
erage accuracy (F-measure > 65%) acrosss them. We
hypothesize that an XML retrieval system working on
an unlabelled corpus could use these features to decide
which retrieval units are most appropriate to return to
the user.

Keywords XML Retrieval, Fuzzy C-Means Cluster-
ing, F-Measure.

1 Introduction

Information retrieval (IR) systems attempt to find
the documents in a corpus which best match a given
query. In traditional IR systems the document is the
obvious unit of retrieval. However, when documents

Proceedings of the 16th Australasian Document Comput-
ing Symposium, Canberra, Australia, 2 December 2011.
Copyright for this article remains with the authors.

are explicitly structured, e.g. in the Extensible Mark-up
Language (XML), it may be more natural to retrieve
sub-elements, such as sections of a paper, or chapters
of a book. This raises a number of additional questions:
What is the optimal granularity of result elements?
Should retrieval results be presented which overlap or
subsume each other? What element types make or do
not make good retrieval units?

In the present work we address the latter question
using resources developed by INEX (Initiative for the
Evaluation of XML Retrieval)[4]. The INEX organis-
ers have provided XML corpora and participants have
contributed queries and assessments in an annual cycle
since 2002.

Given the large number of distinct element types
typically found in an XML corpus (e.g. 1257 in the
2006 INEX Wikipedia corpus), an automatic method
for determining which element types (identified by their
tag) make useful units of retrieval would be of consid-
erable value.

In a first step toward achieving this we calculate
feature scores for each tag in a corpus. For each feature
we use a the Fuzzy c-Means (FCM) clustering method
to label each tag as Useful or Not-Useful. We then
compute the accuracy (F-measure) with which the au-
tomatically assigned labels align with the sets of tags
appearing in the official INEX judgments. We do this
for both the IEEE and Wikipedia 2006 corpora from
INEX! and identify the features which best predict the
usefulness of an element type as a unit of retrieval.

1The only XML corpora for which we had topics and assessments
at the time. The XML version of Wikipedia pages was compiled by
Ludovic Denoyer [3].

Naturally, a method for estimating the usefulness of
element types as retrieval units must be combined with
a normal retrieval system which estimates the relevance
of the content of an element to the query.

In previous work in this area:

e Mihajlovié et al. [5] examined structural knowl-
edge for Information Retrieval in XML Databases,
but explicitly exclude background statistics like el-
ement frequency.

e Alietal.[1] performed statistical analyses of XML
structure. They used structural summaries of the
XML documents in the corpus to answer queries
with structural constraints.

2 Data used
Collection | No. doc.s | No. unique tags
IEEE 16,819 178
Wikipedia | 659,388 1.257

Table 1: Basic characteristics of the INEX collections
examined.

The IEEE collection comprises journal articles
which are well marked-up in XML, including citations.
The Wikipedia articles are far less homogeneously
structured.

3 Candidate features

An XML file is made up of different elements. Each
element exists in a context defined by its parent nodes
(elements) and its child nodes. Any new collection to
be indexed will have new element types with unknown
a-priori probability for their likelihood to be relevant.

To gain more information about each element type
as well as to be able to classify certain nodes, we anal-
ysed XML elements of different XML corpora. For
each element we collected various characteristics for
comparison later on. The main characteristics relevant
to this study were:

Name The name of the element is saved to identify it.

Frequency The number of occurrences of this ele-
ment within the whole corpus.

Size (CharExclKids, CharlInclKids, AVGCharEx-
clKids, AVGCharInclKids) The size is counted in
characters. Two values are collected in character size:
Character excl. Character of child elements — meaning
that the text had to be in the very element itself — and
Character incl. Character of child elements — meaning
the sum of characters occurring in the element itself
or in any of its child elements. Listing 1 shows an
example for an XML element without text nodes.

Listing 1: XML element with only child nodes.

<doc>

<from>Peter</from>
<body>Just a body</body>
</doc>

In this case the characters exclusive of child element

characters for ’doc’ would be 0, whereas the characters
including the characters of the child elements equals
15. The size was believed to be the most important
charateristic of an element. Too small elements might
include good key words, but are too small to return to
the user since they might not include all the needed
information or might be useless out of context. As well,
elements, which are too large include most likely good
information, but it might be hard for the user to locate
it.
Text nodes (TextNodeOcc) The number of text fields
within an element. Two text fields can just be separated
by other elements (children). Therefore this value can
never be higher than the number of children nodes of an
element + 1. Listing 2 shows an example.

Listing 2: XML element with text and child nodes.

<doc>
first text node
<from>Peter</from>
<body>Just a body</body>
second text node
</doc>

Child nodes (CountKids, AVGCountKids) The
number of child nodes was saved, as well as the
number of different types of children occurring
within an element. For each child element different
attributes were saved as well, like the occurrence, if
this child element occurred every time in this certain
parent element, or if its content was always numeric.
Minimum, maximum, average and median values were
generated.

Attributes (AttCount) The attributes were saved just
the way the children nodes are, so their number as well
as their label were marked down for later evaluation.
The number of attributes that had been found was stored
as AttCount.

Depth A list keeps track of the depth in which the
element occurred and delivered the min, max, average
and median values.

File Occurrence (FileOcc) A Boolean variable sup-
ported the process of finding *"Must elements’, meaning
elements, which occured in every file. The number of
files where the element was found was saved as well.

Number of different child nodes of this element
(NumbKidTypes) The number of child element
types the XML element had within the collection.

In order to be able to sub-sequentially evaluate
which elements are more important than others, the

INEX assessments were used. The elements were
enriched by information about their assessment as
being relevant.

Relevant If an element was ever marked in an assess-
ment, this value was set to 1, else 0

Occurrence in Assessment(OccAss) The number of
times an element is marked relevant.

Occurrence as Cover node We defined a cover node
to be the node that covers all data marked relevant in a
single assessment, i.e. the root node of the minimal sub
tree containing relevant sections. When a passage was
marked in an assessment it included most of the times a
number of nodes, as shown in figure 1. The cover node
would have been in this case the best node to return to
the user, since it just enfolded all relevant information.
In this case the C element is the cover node.

Figure 1: The cover node C, covering the whole passage
marked as relevant by an INEX assessor.

4 Method

L)

-Mﬂ__ﬂ} =

- = -] -1 o
oo 0o

= -1 = D

= O s | 1 =W an
B U T K

~] -0 - —HD O

[I | I rrT renrril

Figure 2: Small extract of the scatter plot matrix. Each
plot compares the distribution of feature values for
elements judged relevant and those judged irrelevant.
[Unfortunately, this figure must be viewed in colour.]

Initially we compared the collected characteristics
in a huge scatter plot matrix to get a better understand-
ing of the collections. A small extract can be seen in
figure 2. It shows elements marked as relevant in an-
other colour to allow the visual identification of relevant
element characteristics.

This approach indicated interesting characteristics,
but we needed an objective and deterministic way of
identifying the most useful features (properties). We
employed Fuzzy c-Means clustering (FCM), first intro-
duced by Bezdek in 1981 [2].

As the first step, we created two clusters for each
individual feature based on the value calculated for each
tag. As the second step, we divided the tags into rele-
vant and non relevant set of tags based on these two
clusters and their cut-point for each feature. As the
final step, we measured the alignment of the automat-
ically labeled tags with the published INEX relevance
labels. We measured Precision, Recall and F-Measure
and sorted the features on decreasing F-measure.

We applied this method for both IEEE and
Wikipedia 2006 INEX collections. Among the results
judged relevant for Wikipedia at INEX, 72 out of 1257
element types appeared. The corresponding ratio for
IEEE was very different: 122 out of 177.

5 Results and Discussion

80.0 +
700 +
60.0
500 +
400 +
30.0
200 +
100 +
0.0 +
o & & @ o o

5 s &
Figure 3: Top 10 F-Measure percentages for Wiki
corpus features.

o

=3

A
L0
S ¥ &

Figure 3 and figure 4 show the top 10 F-measure
percentages for Wiki and IEEE corpora. These F-
measure values were based on calculated precision and
recall for the features. Note that despite the marked
differences between the two corpora, eight features
appear in both top-ten lists.

Finally we selected the 8 common features between
the two corpora as the best list of features which can
represent a corpus. We ranked these features based on
the average of their two F-measure values. It can be
seen that seven of the features achieve an F-measure
score in excess of 65%. We propose that these features
con be used to identify and select important tags for
other corpora automatically.

& F s & g & &
N I N
& & & FF S
< & & S

Figure 4: Top 10 F-Measure percentages for IEEE
corpus features.

90.00

80.00

70.00
60.00
50.00
40.00 +
30.00
20.00 -
10.00
0.00

& - & & - &
N eod’ &!’c@ ‘pé.\q P @_\-\& o ctPo @‘_él- & ‘\06{'
¢ & @ ¢ F & & £
¥ ¥
Figure 5: F-Measure percentages averaged across

Wikipedia 2006 and IEEE for the eight features in
common between the two Top Tens.

In a hypothetical retrieval system which calculated
probabilities of relevance to a query for all elements,
estimates of the usefulness of each element type as a
retrieval unit could be fed into the ranking function as
prior probabilities.

One limitation of our work is that we used the name
of a tag to uniquely identify an element type. In general,
XML allows the same tag name to appear as an ele-
ment at different levels in the hierarchy. For example,
the element <name>> as child of an element <person>
might have different child nodes and attributes, than the
element <name> within <project>. This limitation
would need to be removed in transferring our method
into practice.

Obviously, Fuzzy c-Means clustering is far from the
only possible method which could be used to select
features. Future work may discover alternative methods
which outperform even the relatively promising results
reported here.

6 Conclusion

We have applied Fuzzy c-Means clustering to a number
of statistical features of element types within an XML

corpus in an attempt to label the element types as “use-
ful unit of retrieval” or otherwise. We computed the ac-
curacy with which these automatically assigned labels
align with the manual judgments in two very different
INEX test collections. We found substantial overlap
between the best features across the two collections.
We identified seven features whose average prediction
accuracy (F-measure) across the collections exceeded
65%.

We hypothesise that these features could be used
to improve performance of an XML retrieval system
operating over a corpus for which no judgments are
available.

References

[1] Mir Sadek Ali, Mariano P. Consens, Xin Gu, Yaron
Kanza, Flavio Rizzolo and Raquel Kolitski Stasiu. Ef-
ficient, effective and flexible XML retrieval using sum-
maries. In INEX 2006 Revised and Selected Papers, 2006.

[2] J.C. Bezdek. Pattern recognition with fuzzy objective
function algorithms. Kluwer Academic Publishers Nor-
well, MA, USA, 1981.

[3] L Denoyer and P Gallinari. The wikipedia XML corpus.
ACM SIGIR Forum, Jan 2006.

[4] N. Fuhr, N. Govert, G. Kazai and M. Lalmas. INEX:
INitiative for the Evaluation of XML retrieval. In
Proceedings of the SIGIR 2002 Workshop on XML and
Information Retrieval, 2002.

[5] V Mihajlovic, D Hiemstra, H Blok and P Apers. Utilizing
structural knowledge for information retrieval in XML
databases. wwwhome.cs.utwente.nl, Jan 2005.

