HOW THINGS WORK

Web Search
Engines: Part 2

David Hawking
CSIRO ICT Centre

"} A data processing “miracle” provides

\N

responses to hundreds of millions of

/ Web searches each day.

art 1 of this two-part series

(How Things Work, June

2006, pp. 86-88) described

search engine infrastructure

and algorithms for crawling
the Web. Part 2 reviews the algo-
rithms and data structures required to
index 400 terabytes of Web page text
and deliver high-quality results in
response to hundreds of millions of
queries each day.

INDEXING ALGORITHMS

Search engines use an inverted file to
rapidly identify indexing terms—the
documents that contain a particular
word or phrase (J. Zobel and A.
Moffat, “Inverted Files for Text Search
Engines,” to be published in ACM
Computing Surveys, 2006). An in-
verted file is a concatenation of the
postings lists for each distinct term. In
its simplest form, each postings list
comprises a sorted list of the ID num-
bers of the documents that contain it.
A fast-lookup term dictionary refer-
ences the postings lists for each term.

An indexer can create an inverted
file in two phases. In the first phase,
scanning, the indexer scans the text of
each input document. For each index-
able term it encounters, the indexer
writes a posting consisting of a docu-
ment number and a term number to a

Computer

temporary file. Because of the scan-
ning process, this file will naturally be
in document number order.

In the second phase, inversion, the
indexer sorts the temporary file into
term number order, with the docu-
ment number as the secondary sort
key. It also records the starting point
and length of the lists for each entry
in the term dictionary.

REAL INDEXERS

As Figure 1 shows, for high-quality
rankings, real indexers store addi-
tional information in the postings,
such as term frequency or positions.
(For additional information, see S.
Brin and L. Page, “The Anatomy of a
Large-Scale Hypertextual \Web Search
Engine;” www-db.stanford.edu/pub/
papers/google.pdf.)

Scaling up. The scale of the inver-
sion problem for a Web-sized crawl is
enormous: Estimating 500 terms in
each of 20 billion pages, the temporary
file might contain 10 trillion entries.

An obvious approach, document
partitioning, divides up the URLs
between machines in a cluster in the
same way as the crawler. If the system
uses 400 machines to index 20 billion
pages, and the machines share the
load evenly, then each machine man-
ages a partition of 50 million pages.

Even with 400-fold partitioning,
each inverted file contains around 25
billion entries, still a significant index-
ing challenge. An efficient indexer
builds a partial inverted ““file’” in main
memory as it scans documents and
stops when available memory is
exhausted. At that point, the indexer
writes a partial inverted file to disk,
clears memory, and starts indexing the
next document. It then repeats this
process until it has scanned all docu-
ments. Finally, it merges all the partial
inverted files.

Term lookup. The Web’s vocabulary
is unexpectedly large, containing hun-
dreds of millions of distinct terms.
How can this be, you ask, when even
the largest English dictionary lists only
about a million words? The answer is
that the Web includes documents in all
languages, and that human authors
have an apparently limitless propensity
to create new words such as acronyms,
trademarks, e-mail addresses, and
proper names. People certainly want
to search for R2-D2 and C-3PO as well
as IBM, B-52, and, yes, Yahoo! and
Google. Many nondictionary words
are of course misspellings and typo-
graphical errors, but there is no safe
way to eliminate them.

Search engines can choose from var-
ious forms of tries, trees, and hash tables
for efficient term lookup (D.E. Knuth,
The Art of Computer Programming:
Sorting and Searching, Addison-Wesley;,
1973). They can use a two-level struc-
ture to reduce disk seeks, an important
consideration because modern CPUs
can execute many millions of instruc-
tions in the time taken for one seek.

Compression. Indexers can reduce
demands on disk space and memory
by using compression algorithms for
key data structures. Compressed data
structures mean fewer disk accesses
and can lead to faster indexing and
faster query processing, despite the
CPU cost of compression and decom-
pression.

Phrases. In principle, a query pro-
cessor can correctly answer phrase
queries such as “National Science
Foundation™ by intersecting postings
lists containing word position infor-



2,3

2,106

5,327 computer.org/

4,108

2,999

101

Term dictionary

27,111

Score accumulators

Document table

Figure 1.Inverted file index and associated data structures. In this simplified example, the alphabetically sorted term dictionary allows
fast access to a word’s postings list within the inverted file. Postings contain both a document number and a word position within the
document. Note that“nice” occurs five times all told, twice in document 111. On the basis of the first posting, the query processor has

calculated a relevance score for document 2.

mation. In practice, this is much too
slow when postings lists are long.
Special indexing tricks permit a
more rapid response. One trick is to
precompute postings lists for common
phrases. Another is to subdivide the
postings list for a word into sublists,
according to the word that follows the
primary word. For example, postings
for the word “electrical”” might be
divided into sublists for “electrical
apparatus,” *‘electrical current,”
““electrical engineering,”” and so on.
Anchor text. Web browsers high-
light words in a Web page to indicate
the presence of a link that users can
click on. These words are known as
link anchor text. Web search engines
index anchor text with a link’s target—
as well as its source—because anchor
text provides useful descriptions of the
target, except “click here,” of course.
Pages that have many incoming links
accumulate a variety of anchor text
descriptions. The most useful descrip-
tions can be repeated thousands of

times, providing a strong signal of
what the page is about. Anchor text
contributes strongly to the quality of
search results.

Link popularity score. Search
engines assign pages a link popularity
score derived from the frequency of
incoming links. This can be a simple
count or it can exclude links from
within the same site. PageRank, a
more sophisticated link popularity
score, assigns different weights to
links depending on the source’s page
rank. PageRank computation is an
eigenvector calculation on the page-
page link connectivity matrix.

Processing matrices of rank 20 bil-
lion is computationally impractical,
and researchers have invested a great
deal of brainpower in determining how
to reduce the scale of PageRank-like
problems. One approach is to compute
HostRanks from the much smaller
host-host connectivity matrix and dis-
tribute PageRanks to individual pages
within each site afterwards. PageRank

is a Google technology, but other
engines use variants of this approach.

Query-independent score. Inter-
nally, search engines rank Web pages
independently of any query, using a
combination of query-independent fac-
tors such as link popularity, URL
brevity, spam score, and perhaps the
frequency with which users click them.
A page with a high query-independent
score has a higher a priori probability
of retrieval than others that match the
query equally well.

QUERY PROCESSING
ALGORITHMS

By far the most common type of
query that search engines receive con-
sists of a small number of query
words, without operators—for exam-
ple, “Katrina” or ““secretary of state.”
Several researchers have reported that
the average query length is around 2.3
words.

By default, current search engines
return only documents containing all

nugust 2006 S



HOW THINGS WORK

the query words. To achieve this, a
simple-query processor looks up each
query term in the term dictionary and
locates its postings list. The processor
simultaneously scans the postings lists
for all the terms to find documents in
common. It stops once it has found
the required number of matching doc-
uments or when it reaches the end of
a list.

In a document-partitioned environ-
ment, each machine in a cluster must
answer the query on its subset of Web
pages and then send the top-ranked
results to a coordinating machine for
merging and presentation.

REAL QUERY PROCESSORS

The major problem with the simple-
query processor is that it returns poor
results. In response to the query “the
Onion” (seeking the satirical newspa-
per site), pages about soup and gar-
dening would almost certainly swamp
the desired result.

Result quality

Result quality can be dramatically
improved if the query processor scans
to the end of the lists and then sorts the
long list of results according to a rele-
vance-scoring function that takes into
account the number of query term
occurrences, document length, inlink
score, anchor text matches, phrase
matches, and so on. The MSN search
engine reportedly takes into account
more than 300 ranking factors.

Unfortunately, this approach is too
computationally expensive to allow
processing queries like “the Onion™
quickly enough. The postings list for

|

““the” contains billions of entries, and
the number of documents needing to
be scored and sorted—those that con-
tain both “the” and “onion”—is on
the order of tens of millions.

Speeding things up

Real search engines use many tech-
niques to speed things up.

Skipping. Scanning postings lists
one entry at a time is very slow. If the
next document containing “Onion” is
number 2,000,000 and the current
position in the “the” list is 1,500,000,
the search obviously should skip half
a million postings in the latter list as
fast as possible. A small amount of
additional structure in postings lists
permits the query processor to skip for-
ward in steps of hundreds or thousands
to the required document number.

Early termination. The query
processor can save a great deal of
computation if the indexer creates
indexes in which it sorts postings lists
in order of decreasing value. It can
usually stop processing after scanning
only a small fraction of the lists
because later results are less likely to
be valuable than those already seen.
At first glance, early termination
seems to be inconsistent with skipping
and compression techniques, which
require postings to be in document
number order. But there is a solution.

Clever assignment of document
numbers. Instead of arbitrarily num-
bering documents, the crawler or
indexer can number them to reflect
their decreasing query-independent
score. In other words, document num-
ber 1 (or O if you are a mathemati-

The IEEE Comter Seciety

publishes over 150 confierence publicai]

For a preview of the latest papers inyour ficldf@asit

www.comtr.org/publications/

m Computer

cian!) is the document with the high-
est a priori probability of retrieval.

This approach achieves a win-win-
win solution: effective postings com-
pression, skipping, and early termina-
tion.

Caching. There is a strong economic
incentive for search engines to use
caching to reduce the cost of answer-
ing queries. In the simplest case, the
search engine precomputes and stores
HTML results pages for thousands of
the most popular queries. A dedicated
machine can use a simple in-memory
lookup to answer such queries. The
normal query processor also uses
caching to reduce the cost of accessing
commonly needed parts of term dic-
tionaries and inverted files.

of many other fascinating aspects
of search engine operation, such
as estimating the number of hits for a
query when it has not been fully eval-
uated, generating advertisements tar-
geted to the search query, searching
images and videos, merging search
results from other sources such as
news, generating spelling suggestions
from query logs, creating query-biased
result snippets, and performing lin-
guistic operations such as word-stem-
ming in a multilingual environment.
A high priority for search engine
operation is monitoring the search
quality to ensure that it does not
decrease when a new index is installed
or when the search algorithm is mod-
ified. But that is a story in itself.

L imited space prevents discussion

David Hawking is a principal research
scientist at CSIRO ICT Centre, Can-
berra, Australia, and chief scientist at
funnelback.com. Contact him at david.
hawking@csiro.au.

Computer welcomes your submissions
to this bimonthly column. For
additional information, contact Alf
Weaver, the column editor; at
weaver(@cs.virginia.edu.



