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ABSTRACT

The presentation of query biased document snippets as part
of results pages presented by search engines has become an
expectation of search engine users. In this paper we ex-
plore the algorithms and data structures required as part of
a search engine to allow efficient generation of query biased
snippets. We begin by proposing and analysing a document
compression method that reduces snippet generation time
by 58% over a baseline using the 2lib compression library.
These experiments reveal that finding documents on sec-
ondary storage dominates the total cost of generating snip-
pets, and so caching documents in RAM is essential for a
fast snippet generation process. Using simulation, we exam-
ine snippet generation performance for different size RAM
caches. Finally we propose and analyse document reorder-
ing and compaction, revealing a scheme that increases the
number of document cache hits with only a marginal af-
fect on snippet quality. This scheme effectively doubles the
number of documents that can fit in a fixed size cache.

Categoriesand Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval; H.3.4 [Information Storage and
Retrieval]: Systems and Software—performance evaluation
(efficiency and effectiveness);

General Terms

Algorithms, Experimentation, Measurement, Performance

Keywords
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1. INTRODUCTION

Each result in search results list delivered by current WWW
search engines such as search.yahoo.com, google.com and
search.msn.com typically contains the title and URL of the
actual document, links to live and cached versions of the
document and sometimes an indication of file size and type.
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In addition, one or more snippets are usually presented, giv-
ing the searcher a sneak preview of the document contents.

Snippets are short fragments of text extracted from the
document content (or its metadata). They may be static
(for example, always show the first 50 words of the docu-
ment, or the content of its description metadata, or a de-
scription taken from a directory site such as dmoz.org) or
query-biased [20]. A query-biased snippet is one selectively
extracted on the basis of its relation to the searcher’s query.

The addition of informative snippets to search results may
substantially increase their value to searchers. Accurate
snippets allow the searcher to make good decisions about
which results are worth accessing and which can be ignored.
In the best case, snippets may obviate the need to open any
documents by directly providing the answer to the searcher’s
real information need, such as the contact details of a person
or an organization.

Generation of query-biased snippets by Web search en-
gines indexing of the order of ten billion web pages and han-
dling hundreds of millions of search queries per day imposes
a very significant computational load (remembering that
each search typically generates ten snippets). The simple-
minded approach of keeping a copy of each document in a
file and generating snippets by opening and scanning files,
works when query rates are low and collections are small,
but does not scale to the degree required. The overhead of
opening and reading ten files per query on top of access-
ing the index structure to locate them, would be manifestly
excessive under heavy query load. Even storing ten billion
files and the corresponding hundreds of terabytes of data is
beyond the reach of traditional filesystems. Special-purpose
filesystems have been built to address these problems [6].

Note that the utility of snippets is by no means restricted
to whole-of-Web search applications. Efficient generation of
snippets is also important at the scale of whole-of-government
search services such as www.firstgov.gov (c. 25 million
pages) and govsearch.australia.gov.au (c. 5 million pages)
and within large enterprises such as IBM [2] (¢. 50 million
pages). Snippets may be even more useful in database or
filesystem search applications in which no useful URL or
title information is present.

We present a new algorithm and compact single-file struc-
ture designed for rapid generation of high quality snippets
and compare its space/time performance against an obvious
baseline based on the 2zlib compressor on various data sets.
We report the proportion of time spent for disk seeks, disk
reads and cpu processing; demonstrating that the time for
locating each document (seek time) dominates, as expected.



As the time to process a document in RAM is small in
comparison to locating and reading the document into mem-
ory, it may seem that compression is not required. However,
this is only true if there is no caching of documents in RAM.
Controlling the RAM of physical systems for experimenta-
tion is difficult, hence we use simulation to show that caching
documents dramatically improves the performance of snip-
pet generation. In turn, the more documents can be com-
pressed, the more can fit in cache, and hence the more disk
seeks can be avoided: the classic data compression tradeoff
that is exploited in inverted file structures and computing
ranked document lists [24].

As hitting the document cache is important, we examine
document compaction, as opposed to compression, schemes
by imposing an a priori ordering of sentences within a docu-
ment, and then only allowing leading sentences into cache for
each document. This leads to further time savings, with only
marginal impact on the quality of the snippets returned.

2. RELATED WORK

Snippet generation is a special type of extractive docu-
ment summarization, in which sentences, or sentence frag-
ments, are selected for inclusion in the summary on the basis
of the degree to which they match the search query. This
process was given the name of query-biased summarization
by Tombros and Sanderson [20] The reader is referred to
Mani [13] and to Radev et al. [16] for overviews of the very
many different applications of summarization and for the
equally diverse methods for producing summaries.

Early Web search engines presented query-independent
snippets consisting of the first k bytes of the result docu-
ment. Generating these is clearly much simpler and much
less computationally expensive than processing documents
to extract query biased summaries, as there is no need to
search the document for text fragments containing query
terms. To our knowledge, Google was the first whole-of-
Web search engine to provide query biased summaries, but
summarization is listed by Brin and Page [1] only under the
heading of future work.

Most of the experimental work using query-biased sum-
marization has focused on comparing their value to searchers
relative to other types of summary [20, 21], rather than ef-
ficient generation of summaries. Despite the importance of
efficient summary generation in Web search, few algorithms
appear in the literature. Silber and McKoy [19] describe a
linear-time lexical chaining algorithm for use in generic sum-
maries, but offer no empirical data for the performance of
their algorithm. White et al [21] report some experimental
timings of their WebDocSum system, but the snippet gener-
ation algorithms themselves are not isolated, so it is difficult
to infer snippet generation time comparable to the times we
report in this paper.

3. SEARCH ENGINE ARCHITECTURES

A search engine must perform a variety of activities, and is
comprised of many sub-systems, as depicted by the boxes in
Figure 1. Note that there may be several other sub-systems
such as the “Advertising Engine” or the “Parsing Engine”
that could easily be added to the diagram, but we have con-
centrated on the sub-systems that are relevant to snippet
generation. Depending on the number of documents that
the search engine indexes, the data and processes for each
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Figure 1: An abstraction of some of the sub-systems
in a search engine. Depending on the number of
documents indexed, each sub-system could reside on
a single machine, be distributed across thousands of
machines, or a combination of both.

sub-system could be distributed over many machines, or all
occupy a single server and filesystem, competing with each
other for resources. Similarly, it may be more efficient to
combine some sub-systems in an implementation of the di-
agram. For example, the meta-data such as document title
and URL requires minimal computation apart from high-
lighting query words, but we note that disk seeking is likely
to be minimized if title, URL and fixed summary informa-
tion is stored contiguously with the text from which query
biased summaries are extracted. Here we ignore the fixed
text and consider only the generation of query biased sum-
maries: we concentrate on the “Snippet Engine”.

In addition to data and programs operating on that data,
each sub-system also has its own memory management scheme.
The memory management system may simply be the mem-
ory hierarchy provided by the operating system used on ma-
chines in the sub-system, or it may be explicitly coded to
optimise the processes in the sub-system.

There are many papers on caching in search engines (see
[3] and references therein for a current summary), but it
seems reasonable that there is a query cache in the Query
Engine that stores precomputed final result pages for very
popular queries. When one of the popular queries is issued,
the result page is fetched straight from the query cache. If
the issued query is not in the query cache, then the Query
Engine uses the four sub-systems in turn to assemble a re-
sults page.

1. The Lexicon Engine maps query terms to integers.

2. The Ranking Engine retrieves inverted lists for each
term, using them to get a ranked list of documents.

3. The Snippet Engine uses those document numbers and
query term numbers to generate snippets.

4. The Meta Data Engine fetches other information about
each document to construct the results page.



IN A document broken into one sentence per line,
and a sequence of query terms.

1  For each line of the text, £ = [w1, w2, ..., Wn]

2 Let h be 1 if £ is a heading, 0 otherwise.

3 Let ¢ be 2 if £ is the first line of a document,
1 if it is the second line, 0 otherwise.

4 Let ¢ be the number of w; that are query
terms, counting repetitions.

5 Let d be the number of distinct query terms
that match some w;.

6 Identify the longest contiguous run of query
terms in £, say wj ... wjtk.

7 Use a weighted combination of ¢, d, k, h
and ¢ to derive a score s.

8 Insert £ into a max-heap using s as the key.

OUT Remove the number of sentences required from
the heap to form the summary.

Figure 2: Simple sentence ranker that operates on
raw text with one sentence per line.

4. THE SNIPPET ENGINE

For each document identifier passed to the Snippet En-
gine, the engine must generate text, preferably containing
query terms, that attempts to summarize that document.
Previous work on summarization identifies the sentence as
the minimal unit for extraction and presentation to the
user [12]. Accordingly, we also assume a web snippet extrac-
tion process will extract sentences from documents. In order
to construct a snippet, all sentences in a document should be
ranked against the query, and the top two or three returned
as the snippet. The scoring of sentences against queries has
been explored in several papers [7, 12, 18, 20, 21], with dif-
ferent features of sentences deemed important.

Based on these observations, Figure 2, shows the general
algorithm for scoring sentences in relevant documents, with
the highest scoring sentences making the snippet for each
document. The final score of a sentence, assigned in Step 7,
can be derived in many different ways. In order to avoid
bias towards any particular scoring mechanism, we compare
sentence quality later in the paper using the individual com-
ponents of the score, rather than an arbitrary combination
of the components.

4.1 Parsing Web Documents

Unlike well edited text collections that are often the target
for summarization systems, Web data is often poorly struc-
tured, poorly punctuated, and contains a lot of data that do
not form part of valid sentences that would be candidates
for parts of snippets.

We assume that the documents passed to the Snippet
Engine by the Indexing Engine have all HTML tags and
JavaScript removed, and that each document is reduced to a
series of word tokens separated by non-word tokens. We de-
fine a word token as a sequence of alphanumeric characters,
while a non-word is a sequence of non-alphanumeric charac-
ters such as whitespace and the other punctuation symbols.
Both are limited to a maximum of 50 characters. Adjacent,
repeating characters are removed from the punctuation.

Included in the punctuation set is a special end of sentence
marker which replaces the usual three sentence terminators
“?71.7. Often these explicit punctuation characters are miss-

ing, and so HTML tags such as <br> and <p> are assumed to
terminate sentences. In addition, a sentence must contain at
least five words and no more than twenty words, with longer
or shorter sentences being broken and joined as required to
meet these criteria [10].

Unterminated HTML tags—that is, tags with an open
brace, but no close brace—cause all text from the open brace
to the next open brace to be discarded.

A major problem in summarizing web pages is the pres-
ence of large amounts of promotional and navigational ma-
terial (“navbars”) visually above and to the left of the actual
page content. For example, “The most wonderful company
on earth. Products. Service. About us. Contact us. Try
before you buy.” Similar, but often not identical, naviga-
tional material is typically presented on every page within a
site. This material tends to lower the quality of summaries
and slow down summary generation.

In our experiments we did not use any particular heuris-
tics for removing navigational information as the test collec-
tion in use (WT100G) pre-dates the widespread take up of
the current style of web publishing. In wT100G, the average
web page size is more than half the current Web average [11].
Anecdotally, the increase is due to inclusion of sophisticated
navigational and interface elements and the JavaScript func-
tions to support them.

Having defined the format of documents that are pre-
sented to the Snippet Engine, we now define our Compressed
Token System (CTS) document storage scheme, and the
baseline system used for comparison.

4.2 Baseline Snippet Engine

An obvious document representation scheme is to simply
compress each document with a well known adaptive com-
pressor, and then decompress the document as required [1],
using a string matching algorithm to effect the algorithm in
Figure 2. Accordingly, we implemented such a system, using
zlib [4] with default parameters to compress every document
after it has been parsed as in Section 4.1.

Each document is stored in a single file. While manage-
able for our small test collections or small enterprises with
millions of documents, a full Web search engine may require
multiple documents to inhabit single files, or a special pur-
pose filesystem [6].

For snippet generation, the required documents are de-
compressed one at a time, and a linear search for provided
query terms is employed. The search is optimized for our
specific task, which is restricted to matching whole words
and the sentence terminating token, rather than general pat-
tern matching.

4.3 ThecTs Snippet Engine

Several optimizations over the baseline are possible. The
first is to employ a semi-static compression method over the
entire document collection, which will allow faster decom-
pression with minimal compression loss [24]. Using a semi-
static approach involves mapping words and non-words pro-
duced by the parser to single integer tokens, with frequent
symbols receiving small integers, and then choosing a coding
scheme that assigns small numbers a small number of bits.
Words and non-words strictly alternate in the compressed
file, which always begins with a word.

In this instance we simply assign each symbol its ordinal
number in a list of symbols sorted by frequency. We use the



vbyte coding scheme to code the word tokens [22]. The set
of non-words is limited to the 64 most common punctuation
sequences in the collection itself, and are encoded with a flat
6-bit binary code. The remaining 2 bits of each punctuation
symbol are used to store capitalization information.

The process of computing the semi-static model is compli-
cated by the fact that the number of words and non-words
appearing in large web collections is high. If we stored all
words and non-words appearing in the collection, and their
associated frequency, many gigabytes of RAM or a B-tree or
similar on-disk structure would be required [23]. Moffat et
al. [14] have examined schemes for pruning models during
compression using large alphabets, and conclude that rarely
occurring terms need not reside in the model. Rather, rare
terms are spelt out in the final compressed file, using a spe-
cial word token (ESCAPE symbol), to signal their occurrence.

During the first pass of encoding, two move-to-front queues
are kept; one for words and one for non-words. Whenever
the available memory is consumed and a new symbol is dis-
covered in the collection, an existing symbol is discarded
from the end of the queue. In our implementation, we en-
force the stricter condition on eviction that, where possible,
the evicted symbol should have a frequency of one. If there is
no symbol with frequency one in the last half of the queue,
then we evict symbols of frequency two, and so on until
enough space is available in the model for the new symbol.

The second pass of encoding replaces each word with its
vbyte encoded number, or the ESCAPE symbol and an ASCII
representation of the word if it is not in the model. Simi-
larly each non-word sequence is replaced with its codeword,
or the codeword for a single space character if it is not in the
model. We note that this lossless compression of non-words
is acceptable when the documents are used for snippet gen-
eration, but may not be acceptable for a document database.
We assume that a separate sub-system would hold cached
documents for other purposes where exact punctuation is
important.

While this semi-static scheme should allow faster decom-
pression than the baseline, it also readily allows direct match-
ing of query terms as compressed integers in the compressed
file. That is, sentences can be scored without having to de-
compress a document, and only the sentences returned as
part of a snippet need to be decoded.

The CTS system stores all documents contiguously in one
file, and an auxiliary table of 64 bit integers indicating the
start offset of each document in the file. Further, it must
have access to the reverse mapping of term numbers, allow-
ing those words not spelt out in the document to be recov-
ered and returned to the Query Engine as strings. The first
of these data structures can be readily partitioned and dis-
tributed if the Snippet Engine occupies multiple machines;
the second, however, is not so easily partitioned, as any
document on a remote machine might require access to the
whole integer-to-string mapping. This is the second reason
for employing the model pruning step during construction of
the semi-static code: it limits the size of the reverse mapping
table that should be present on every machine implementing
the Snippet Engine.

4.4 Experimental assessment of CTs

All experiments reported in this paper were run on a Sun
Fire V210 Server running Solaris 10. The machine consists
of dual 1.34 GHz UltraSPARC IIIi processors and 4GB of

wT10G wT50G wT100G
No. Docs. (x10°) 1.7 10.1 185
Raw Text 10,522 56,684 102,833
Baseline(zlib) 2,568 (24%) 10,940 (19%) 19,252 (19%)
CTS 2,722 (26%) 12,010 (21%) 22,269 (22%)

Table 1: Total storage space (Mb) for documents
for the three test collections both compressed, and
uncompressed.
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Figure 3: Time to generate snippets for 10 doc-
uments per query, averaged over buckets of 100
queries, for the first 7000 Excite queries on wT10G.

RAM. All source code was compiled using gce4.1.1 with -O9
optimisation. Timings were run on an otherwise unoccu-
pied machine and were averaged over 10 runs, with memory
flushed between runs to eliminate any caching of data files.

In the absence of evidence to the contrary, we assume that
it is important to model realistic query arrival sequences and
the distribution of query repetitions for our experiments.
Consequently, test collections which lack real query logs,
such as TREC Ad Hoc and .GOV2 were not considered suit-
able. Obtaining extensive query logs and associated result
doc-ids for a corresponding large collection is not easy. We
have used two collections (WT10G and wT100G) from the
TREC Web Track [8] coupled with queries from Excite logs
from the same (c. 1997) period. Further, we also made use
of a medium sized collection WT50G, obtained by randomly
sampling half of the documents from wT100G. The first two
rows of Table 1 give the number of documents and the size
in Mb of these collections.

The final two rows of Table 1 show the size of the resulting
document sets after compression with the baseline and CTS
schemes. As expected, CTS admits a small compression
loss over zlib, but both substantially reduce the size of the
text to about 20% of the original, uncompressed size. Note
that the figures for CTS do not include the reverse mapping
from integer token to string that is required to produce the
final snippets as that occupies RAM. It is 1024 Mb in these
experiments.

The Zettair search engine [25] was used to produce a list
of documents to summarize for each query. For the majority
of the experiments the Okapi BM25 scoring scheme was used
to determine document rankings. For the static caching ex-
periments reported in Section 5, the score of each document



wTl0G¢ wTh0G¢ wTl00G

Baseline 75 157 183
CTS 38 70 7
Reduction in time 49% 56% 58%

Table 2: Average time (msec) for the final 7000

queries in the Excite logs using the baseline and CTS
systems on the 3 test collections.

is a 50:50 weighted average of the BM25 score (normalized
by the top scoring document for each query) and a score for
each document independent of any query. This is to simu-
late effects of ranking algorithms like PageRank [1] on the
distribution of document requests to the Snippet Engine. In
our case we used the normalized Access Count [5] computed
from the top 20 documents returned to the first 1 million
queries from the Excite log to determine the query indepen-
dent score component.

Points on Figure 3 indicate the mean running time to
generate 10 snippets for each query, averaged in groups of
100 queries, for the first 7000 queries in the Excite query
log. Only the data for wT10G is shown, but the other col-
lections showed similar patterns. The x-axis indicates the
group of 100 queries; for example, 20 indicates the queries
2001 to 2100. Clearly there is a caching effect, with times
dropping substantially after the first 1000 or so queries are
processed. All of this is due to the operating system caching
disk blocks and perhaps pre-fetching data ahead of specific
read requests. This is evident because the baseline system
has no large internal data structures to take advantage of
non-disk based caching, it simply opens and processes files,
and the speed up is evident for the baseline system.

Part of this gain is due to the spatial locality of disk ref-
erences generated by the query stream: repeated queries
will already have their document files cached in memory;
and similarly different queries that return the same docu-
ments will benefit from document caching. But when the
log is processed after removing all but the first request for
each document, the pronounced speed-up is still evident as
more queries are processed (not shown in figure). This sug-
gests that the operating system (or the disk itself) is reading
and buffering a larger amount of data than the amount re-
quested and that this brings benefit often enough to make
an appreciable difference in snippet generation times. This
is confirmed by the curve labeled “CTS without caching”,
which was generated after mounting the filesystem with a
“no-caching” option (directio in Solaris). With disk caching
turned off, the average time to generate snippets varies little.

The time to generate ten snippets for a query, averaged
over the final 7000 queries in the Excite log as caching effects
have dissipated, are shown in Table 2. Once the system has
stabilized, CTS is over 50% faster than the Baseline sys-
tem. This is primarily due to CTS matching single integers
for most query words, rather than comparing strings in the
baseline system.

Table 3 shows a break down of the average time to gen-
erate ten snippets over the final 7000 queries of the Ex-
cite log on the wT50G collection when entire documents are
processed, and when only the first half of each document
is processed. As can be seen, the majority of time spent
generating a snippet is in locating the document on disk
(“Seek”): 64% for whole documents, and 75% for half doc-
uments. Even if the amount of processing a document must

% of doc processed Seek Read Score & Decode
100% 45 4 21
50% 45 4 11

Table 3: Time to generate 10 snippets for a single
query (msec) for the wr50G collection averaged over
the final 7000 Excite queries when either all of each
document is processed (100%) or just the first half
of each document (50%).

undergo is halved, as in the second row of the Table, there is
only a 14% reduction in the total time required to generate
a snippet. As locating documents in secondary storage oc-
cupies such a large proportion of snippet generation time, it
seems logical to try and reduce its impact through caching.

5. DOCUMENT CACHING

In Section 3 we observed that the Snippet Engine would
have its own RAM in proportion to the size of the docu-
ment collection. For example, on a whole-of-Web search
engine, the Snippet Engine would be distributed over many
workstations, each with at least 4 Gb of RAM. In a small
enterprise, the Snippet Engine may be sharing RAM with
all other sub-systems on a single workstation, hence only
have 100 Mb available. In this section we use simulation to
measure the number of cache hits in the Snippet Engine as
memory size varies.

We compare two caching policies: a static cache, where
the cache is loaded with as many documents as it can hold
before the system begins answering queries, and then never
changes; and a least-recently-used cache, which starts out as
for the static cache, but whenever a document is accessed it
moves to the front of a queue, and if a document is fetched
from disk, the last item in the queue is evicted. Note that
documents are first loaded into the caches in order of de-
creasing query independent score, which is computed as de-
scribed in Section 4.4.

The simulations also assume a query cache exists for the
top @ most frequent queries, and that these queries are never
processed by the Snippet Engine.

All queries passed into the simulations are from the second
half of the Excite query log (the first half being used to com-
pute query independent scores), and are stemmed, stopped,
and have their terms sorted alphabetically. This final al-
teration simply allows queries such as “red dog” and “dog
red” to return the same documents, as would be the case
in a search engine where explicit phrase operators would be
required in the query to enforce term order and proximity.

Figure 4 shows the percentage of document access that
hit cache using the two caching schemes, with @ either 0
or 10,000, on 535,276 Excite queries on wr1l00G. The x-
axis shows the percentage of documents that are held in the
cache, so 1.0% corresponds to about 185,000 documents.
From this figure it is clear that caching even a small per-
centage of the documents has a large impact on reducing
seek time for snippet generation. With 1% of documents
cached, about 222 Mb for the wT100G collection, around
80% of disk seeks are avoided. The static cache performs
surprisingly well (squares in Figure 4), but is outperformed
by the LRU cache (circles). In an actual implementation of
LRU, however, there may be fragmentation of the cache as
documents are swapped in and out.

The reason for the large impact of the document cache is
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Figure 4: Percentage of the time that the Snippet
Engine does not have to go to disk in order to gen-
erate a snippet plotted against the size of the docu-
ment cache as a percentage of all documents in the
collection. Results are from a simulation on wr100G
with 535,276 Excite queries.

that, for a particular collection, some documents are much
more likely to appear in results lists than others. This effect
occurs partly because of the approximately Zipfian query
frequency distribution, and partly because most Web search
engines employ ranking methods which combine query based
scores with static (a priori) scores determined from factors
such as link graph measures, URL features, spam scores and
so on [17]. Documents with high static scores are much more
likely to be retrieved than others.

In addition to the document cache, the RAM of the Snip-
pet Engine must also hold the CTS decoding table that
maps integers to strings, which is capped by a parameter at
compression time (1 Gb in our experiments here). This is
more than compensated for by the reduced size of each doc-
ument, allowing more documents into the document cache.
For example, using CTS reduces the average document size
from 5.7 Kb to 1.2 Kb (as shown in Table 1), so a 2 Gb RAM
could hold 368,442 uncompressed documents (2% of the col-
lection), or 850,691 documents plus a 1 Gb decompression
table (5% of the collection).

In fact, further experimentation with the model size re-
veals that the model can in fact be very small and still CTS
gives good compression and fast scoring times. This is evi-
denced in Figure 5, where the compressed size of wT50¢G is
shown in the solid symbols. Note that when no compression
is used (Model Size is 0Mb), the collection is only 31 Gb as
HTML markup, JavaScript, and repeated punctuation has
been discarded as described in Section 4.1. With a 5 Mb
model, the collection size drops by more than half to 14 Gb,
and increasing the model size to 750 Mb only elicits a 2 Gb
drop in the collection size. Figure 5 also shows the average
time to score and decode a a snippet (excluding seek time)
with the different model sizes (open symbols). Again, there
is a large speed up when a 5 Mb model is used, but little
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Figure 5: Collection size of the WT50G collection
when compressed with CTS using different memory
limits on the model, and the average time to gen-
erate single snippet excluding seek time on 20000
Excite queries using those models.

improvement with larger models. Similar results hold for
the wT100G collection, where a model of about 10 Mb of-
fers substantial space and time savings over no model at all,
but returns diminish as the model size increases.

Apart from compression, there is another approach to re-
ducing the size of each document in the cache: do not store
the full document in cache. Rather store sentences that are
likely to be used in snippets in the cache, and if during snip-
pet generation on a cached document the sentence scores do
not reach a certain threshold, then retrieve the whole doc-
ument from disk. This raises questions on how to choose
sentences from documents to put in cache, and which to
leave on disk, which we address in the next section.

6. SENTENCE REORDERING

Sentences within each document can be re-ordered so that
sentences that are very likely to appear in snippets are at the
front of the document, hence processed first at query time,
while less likely sentences are relegated to the rear of the
document. Then, during query time, if k£ sentences with a
score exceeding some threshold are found before the entire
document is processed, the remainder of the document is
ignored. Further, to improve caching, only the head of each
document can be stored in the cache, with the tail residing
on disk. Note that we assume that the search engine is to
provide “cached copies” of a document—that is, the exact
text of the document as it was indexed—then this would be
serviced by another sub-system in Figure 1, and not from
the altered copy we store in the Snippet Engine.

We now introduce four sentence reordering approaches.
1. Natural order The first few sentences of a well authored
document usually best describe the document content [12].
Thus simply processing a document in order should yield a
quality snippet. Unfortunately, however, web documents are
often not well authored, with little editorial or professional



writing skills brought to bear on the creation of a work of
literary merit. More importantly, perhaps, is that we are
producing query-biased snippets, and there is no guarantee
that query terms will appear in sentences towards the front
of a document.

2. Significant terms (ST) Luhn introduced the concept
of a significant sentence as containing a cluster of signifi-
cant terms [12], a concept found to work well by Tombros
and Sanderson [20]. Let fq. be the frequency of term ¢ in
document d, then term ¢ is determined to be significant if

7—0.1><(25—Sd), if sq4 < 25
fae>4 7, if 25 < 54 < 40
74 0.1 x (sq —40), otherwise,

where sq4 is the number of sentences in document d. A brack-
eted section is defined as a group of terms where the leftmost
and rightmost terms are significant terms, and no significant
terms in the bracketed section are divided by more than four
non-significant terms. The score of a bracketed section is
the square of the number of significant words falling in the
section, divided by the total number of words in the entire
sentence. The a priori score for a sentence is computed as
the maximum of all scores for the bracketed sections of the
sentence. We then sort the sentences by this score.

3. Query log based (QLt) Many Web queries repeat,
and a small number of queries make up a large volume of
total searches [9]. In order to take advantage of this bias,
sentences that contain many past query terms should be
promoted to the front of a document, while sentences that
contain few query terms should be demoted. In this scheme,
the sentences are sorted by the number of sentence terms
that occur in the query log. To ensure that long sentences do
not dominate over shorter qualitative sentences the score as-
signed to each sentence is divided by the number of terms in
that sentence giving each sentence a score between 0 and 1.
4. Query log based (QLu) This scheme is as for QL#,
but repeated terms in the sentence are only counted once.

By re-ordering sentences using schemes ST, QLt or QLu,
we aim to terminate snippet generation earlier than if Natu-
ral Order is used, but still produce sentences with the same
number of unique query terms (d in Figure 2), total number
of query terms (c), the same positional score (h+¢) and the
same maximum span (k). Accordingly, we conducted exper-
iments comparing the methods, the first 80% of the Excite
query log was used to reorder sentences when required, and
the final 20% for testing.

Figure 6 shows the differences in snippet scoring com-
ponents using each of the three methods over the Natural
Order method. It is clear that sorting sentences using the
Significant Terms (ST) method leads to the smallest change
in the sentence scoring components. The greatest change
over all methods is in the sentence position (h + £) com-
ponent of the score, which is to be expected as their is no
guarantee that leading and heading sentences are processed
at all after sentences are re-ordered. The second most af-
fected component is the number of distinct query terms in a
returned sentence, but if only the first 50% of the document
is processed with the ST method, there is a drop of only 8%
in the number of distinct query terms found in snippets.

Depending how these various components are weighted to
compute an overall snippet score, one can argue that there
is little overall affect on scores when processing only half the
document using the ST method.

70%
60%
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40%
30%
20%
10%

Relative difference to Natural Order

0%

o o oo
70%  — 60% 50%
Documents size used

Figure 6: Relative difference in the snippet score
components compared to Natural Ordered docu-
ments when the amount of documents processed is
reduced, and the sentences in the document are re-
ordered using Query Logs (QLt, QLu) or Significant
Terms (ST).

7. DISCUSSION

In this paper we have described the algorithms and com-
pression scheme that would make a good Snippet Engine
sub-system for generating text snippets of the type shown on
the results pages of well known Web search engines. Our ex-
periments not only show that our scheme is over 50% faster
than the obvious baseline, but also reveal some very impor-
tant aspects of the snippet generation problem. Primarily,
caching documents avoids seek costs to secondary memory
for each document that is to be summarized, and is vital for
fast snippet generation. Our caching simulations show that
if as little as 1% of the documents can be cached in RAM as
part of the Snippet Engine, possibly distributed over many
machines, then around 75% of seeks can be avoided. Our
second major result is that keeping only half of each docu-
ment in RAM), effectively doubling the cache size, has little
affect on the quality of the final snippets generated from
those half-documents, provided that the sentences that are
kept in memory are chosen using the Significant Term al-
gorithm of Luhn [12]. Both our document compression and
compaction schemes dramatically reduce the time taken to
generate snippets.

Note that these results are generated using a 100Gb sub-
set of the Web, and the Excite query log gathered from the
same period as that subset was created. We are assuming, as
there is no evidence to the contrary, that this collection and
log is representative of search engine input in other domains.
In particular, we can scale our results to examine what re-
sources would be required, using our scheme, to provide a
Snippet Engine for the entire World Wide Web.

We will assume that the Snippet Engine is distributed
across M machines, and that there are N web pages in the
collection to be indexed and served by the search engine. We
also assume a balanced load for each machine, so each ma-
chine serves about N/M documents, which is easily achieved
in practice. Each machine, therefore, requires RAM to hold
the following.

e The CTS model, which should be 1/1000 of the size
of the uncompressed collection (using results in Fig-



ure 5 and Williams et al. [23]). Assuming an average
uncompressed document size of 8 Kb [11], this would
require N/M x 8.192 bytes of memory.

e A cache of 1% of all N/M documents. Each document
requires 2 Kb when compressed with CTS (Table 1),
and only half of each document is required using ST
sentence reordering, requiring a total of N/M x 0.01 x
1024 bytes.

e The offset array that gives the start position of each
document in the single, compressed file: 8 bytes per
N/M documents.

The total amount of RAM required by a single machine,
therefore, would be N/M(8.192 + 10.24 + 8) bytes. Assum-
ing that each machine has 8 Gb of RAM, and that there are
20 billion pages to index on the Web, a total of M = 62 ma-
chines would be required for the Snippet Engine. Of course
in practice, more machines may be required to manage the
distributed system, to provide backup services for failed
machines, and other networking services. These machines
would also need access to 37 Tb of disk to store the com-
pressed document representations that were not in cache.

In this work we have deliberately avoided committing to
one particular scoring method for sentences in documents.
Rather, we have reported accuracy results in terms of the
four components that have been previously shown to be
important in determining useful snippets [20]. The CTS
method can incorporate any new metrics that may arise in
the future that are calculated on whole words. The doc-
ument compaction techniques using sentence re-ordering,
however, remove the spatial relationship between sentences,
and so if a scoring technique relies on the position of a sen-
tence within a document, the aggressive compaction tech-
niques reported here cannot be used.

A variation on the semi-static compression approach we
have adopted in this work has been used successfully in pre-
vious search engine design [24], but there are alternate com-
pression schemes that allow direct matching in compressed
text (see Navarro and Mékinen [15] for a recent survey.) As
seek time dominates the snippet generation process, we have
not focused on this portion of the snippet generation in de-
tail in this paper. We will explore alternate compression
schemes in future work.
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