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ABSTRACT
Following Long and Suel, we empirically investigate the impor-
tance of document order in search engines which rank documents
using a combination of dynamic (query-dependent) and static (query-
independent) scores, and use document-at-a-time (DAAT) process-
ing. When inverted file postings are in collection order, assign-
ing document numbers in order of descending static score supports
lossless early termination while maintaining good compression.

Since static scores may not be available until all documents have
been gathered and indexed, we build a tool for reordering an ex-
isting index and show that it operates in less than 20% of the orig-
inal indexing time. We note that this additional cost is easily re-
couped by savings at query processing time. We compare best
early-termination points for several different index orders on three
enterprise search collections (a whole-of-government index with
two very different query sets, and a collection from a UK univer-
sity). We also present results for the same orders for ClueWeb09-CatB
. Our evaluation focuses on finding results likely to be clicked on
by users of Web or website search engines — Nav and Key results
in the TREC 2011 Web Track judging scheme.

The orderings tested are Original, Reverse, Random, and QIE
(descending order of static score). For three enterprise search test
sets we find that QIE order can achieve close-to-maximal search
effectiveness with much lower computational cost than for other
orderings. Additionally, reordering has negligible impact on com-
pressed index size for indexes that contain position information.
Our results for an artificial query set against the TREC ClueWeb09
Category B collection are much more equivocal and we canvass
possible explanations for future investigation.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Storage and Retrieval—
Information Search and Retrieval; H.3.4 [Information Systems]:
Information Storage and Retrieval—Systems and Software

Keywords
Enterprise search; inverted files; efficiency and effectiveness; infor-
mation retrieval.
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1. INTRODUCTION
Commercial search engines are subject to strong incentives to

deliver fast query response, while using as little hardware as pos-
sible. Slow response degrades user experience [3] and negates the
value of “instant search”1, while inefficient retrieval algorithms in-
crease infrastructure costs and lower profitability. If the time taken
to run a query over an index of a certain size can be reduced by a
factor of f while keeping the hardware constant, then the number
of machines needed to support a large query load is also reduced
by a factor of f . Not only is the cost of hardware reduced but so
too is the cost of data centre hosting, system administration, and
electricity. Even better, for most countries, greenhouse gas emis-
sions fall in line with reduced electricity demand. For major world
wide web search engines, a factor of two in query processing effi-
ciency could translate to billions of dollars per annum and, depend-
ing upon energy mix, to savings of the order of a million tonnes of
CO2 emissions.

To illustrate the importance of this point, a European Energy
Agency graph2 shows that, worldwide, approximately 500gm CO2
is emitted per kWh of electricity generated. A typical rack-mounted
server consumes a constant 250W and in the course of a year con-
sumes 365× 24

4 = 2190 kWh. Transmission losses and data cen-
tre overheads such as airconditioning push that up to a generat-
ing requirement of around 3000 kWh p.a, corresponding to about
1.5 tonnes of CO2 per server. Guessing a deployment of a million
servers for a hyothetical major search engine, leads to an emission
estimate above a million tonnes. (In Australia, where electricity
generation is heavily reliant on coal, CO2 emissions in 2009 were
about 80% higher at 928gm per kWh generated.3) These arguments
also apply in smaller scale commercial search engine deployments,
such as intranets in large organisations, high-volume e-commerce
sites, whole-of-government search, multi-tenancy hosted website
search (Sofware-as-a-Service, or SaaS), and search “in a cloud”.
The largest of such deployments may index of the order of a billion
documents and/or process thousands of queries per second. An in-
crease in query efficiency allowing for smaller numbers of servers
clearly has a large environmental impact.

We investigate the hypothesis that smarter ordering of documents
in an index can significantly improve the efficiency of query pro-
cessing without reducing quality of results. We present a tool to
efficiently re-order an existing index according to a permutation
file and report its cost relative to indexing time. We then take
two example enterprise web indexes for which we have appropriate

1When a search engine takes a partially submitted query, guesses
a likely completion and runs it, presenting one or more result sets
before the user has finished typing.
2http://www.eea.europa.eu/data-and-maps/figures/
co2-emissions-per-kwh-of, accessed 26 Oct 2012.
3ABB Australia: Energy efficiency report, updated Jan 2011.



query test sets and plot query response and effectiveness against
different DAAT termination points for Original, Reverse, Random,
and QIE (Query Independent Evidence, i.e. descending order of
static score) permutations. We conduct a similar comparison for
ClueWeb09-CatB using an artificial query set.

2. BACKGROUND AND CONTEXT

2.1 Search engine architecture
A simple model which is adopted in essence by many search

companies is to split a large collection of documents into m parti-
tions comprising roughly equal numbers of documents. This may
be done by hashing on URLs. Each partition is indexed separately
and the index is replicated across the n query processing servers
assigned to that partition. Thus we have an m×n matrix of servers.
The incoming query stream is load-balanced across the n rows of
that matrix. Each row supports a broker function which multicasts
an incoming query to all the query processors in the row and merges
the results.

The optimal partition size depends upon the hardware configu-
ration of the query processing servers, the efficiency of the rank-
ing algorithm, the size of documents, and the design goals for re-
sponse time. With 2012-era hardware, and an average response
time goal of say rave = 100msec, a reasonable partition size might
be up to around 100 million web documents. That number could
be increased significantly for shorter documents such as microblog
posts or database records.

The above architecture is oversimplified and takes no account of
real-life complications such as query caching, real time indexing,
load balancing, efficient result merging and fault tolerance. How-
ever, it is sufficiently accurate to place the present work in context.

Here we focus on efficient ranking on a single query processing
server – one node in the matrix – with an index of up to 100 million
web pages. If the response time goals are achieved and the server
has c processor cores, the whole matrix will be able to handle c×n

rave

and each individual server will be able to handle c/rave queries per
second. For a 12-core server that would give a total throughput
of 120 queries per second, assuming that query processing is CPU-
bound and that the full benefit of parallelism can be achieved across
the cores.

2.2 Queries and information needs
Although law firms, patent departments, investment advisers,

medical reviewers and intelligence agencies have genuine needs
for complex, high-recall search, here we focus on the set of queries
which comprise a small number of words and no operators, and
which result from an information need which can be satisfied by
a small number of documents. The vast majority of queries sub-
mitted to the commercial search engines we have been discussing
belong to this set.

For example, a student at a university searches for ’exam timetable’
and clicks only on the link which takes them to the relevant timetable
site; A computer scientist searches on the Web for ’RFC 3261’ and
clicks only on the Session Initiation Protocol document from IETF;
A citizen searches for ’tax’, and selects the home page for the na-
tional taxation office. In other words, although a typical query may
find many matching documents, the searcher is most often satisfied
by a very small number of them.

Queries without operators are often described as “bag of words”
queries. However, modern commercial ranking functions assign
higher scores to documents which match the sequence of words in
the query or subsequences of it. In the following example queries
from the TREC-2009 Web Track set, it seems intuitive that docu-
ments matching the query as a phrase are more likely to be useful

than those containing unassociated occurrences of the query words:
“mitchell college”, “rick warren”, “orange county convention cen-
ter”, “pampered chef”. Accordingly, it may be better to think of
“sequence of words” queries.

Since 2010, the TREC Web Track [6] has adopted a six-point
relevance judging scale: {Nav, Key, HRel, Rel, Non, Junk}. Nav
and Key correspond to the desired answers to homepage finding and
topic distillation tasks respectively. These tasks were investigated
in earlier Web Track campaigns.

Documents receiving clicks in the categories of search repre-
sented by the examples above are likely to be Nav or Key docu-
ments. Consequently, we focus our evaluations on common Web-
style queries and these Nav or Key answers.

2.3 Ranking and query matching methods
We assume that documents are ranked by a combination of query-

dependent (dynamic) and query-independent (static) scores, as is
believed to be the case in most commercial search engines. Query
independent scores may include link-graph measures [15, 4], ac-
cess frequency [12, 13], document quality scores [16, 1], non-spam
score [8], recency, and so on. The overall ranking function is typi-
cally machine-learned [23] and may combine more than 1000 fea-
tures.

Sequence-of-words queries which contain more than one word
(W1,W2 . . .Wn) may be processed either term-at-a-time (TAAT) or
document-at-a-time (DAAT) [24]. In unoptimised TAAT, all docu-
ments containing W1 receive a partial score, then those containing
W2, have their scores augmented and so on up to Wn. Finally, all
documents with non-zero scores are sorted in descending score or-
der. Until the last term is being processed, it cannot be known
which documents satisfy the AND of the query terms. An obvious
optimisation is to store postings in impact order and truncate low-
impact postings, but this is potentially lossy, as truncated postings
for one term may have combined with high-impact scores for an-
other, and AND matches or even phrase matches, may be missed.
Long and Suel [14] claim that the TAAT model is infeasible at large
scale.

In DAAT, postings lists for terms are scanned in “parallel” and
are assumed to be in document number order. It is easy to deter-
mine whether candidate documents match the AND of the query
terms and whether they match the query as a phrase4.

The DAAT model avoids the need for a large accumulator set,
supports more efficient AND or Weak-AND (WAND) processing
[2], allows for easier upweighting of phrases and terms in proxim-
ity, delivers higher quality results in the event of a forced timeout,
and, as we shall see, supports principled early-termination. Svore
et al [22] claim retrieval effectiveness gains of up to 13% through
use of proximity features in Web search.

Here we restrict our discussion to the DAAT model.

2.4 Index formats
According to Ding and Suel [11], methods for early termination

of query processing use one of three inverted file structures:

• Document-sorted Indexes: in which the postings in each
list are sorted by document ID. This is the usual representa-
tion for DAAT-based early termination techniques.

• Impact-sorted Indexes: in which the documents in each
postings list are sorted by their impact on ranking under e.g.
Cosine or BM25. This is the usual approach for TAAT-based
early termination techniques

4Assuming that the index includes term positions



• Impact-layered Indexes: in which the postings are divided
in to layers according to impact, but those layers are sorted
by document ID. This allows some of the benefit of impact
sorting in DAAT techniques, although it comes at a compres-
sion cost due to larger gaps between document IDs.

Ding and Suel note that document-sorted indexes are less studied
for early termination strategies [11]. In this paper we assume a
document-sorted index, since it fits the DAAT model which is fea-
sible at web scale.

Compression increases the size of index which can be accommo-
dated in a given memory size, or read in a single read from disk.
Much work in query processing assumes that indexes cannot be
fully resident. More recently, this assumption has been revisited [9,
21], and according to [10] Google’s web search indexes have been
memory-resident since 2003.

In this paper we make no assumption about whether indexes are
fully resident or not. The index ordering method investigated here
will bring benefit in the fully resident case and also increase the
locality of reference in the partially resident case. In the exper-
iments reported here the small indexes are fully resident and the
ClueWeb09-CatB index is not.

2.5 Optimising DAAT processing when static
scores are used

Long and Suel [14] were the first to illustrate that early termi-
nation of DAAT processing is possible when postings are arranged
in order of decreasing static score. In their work, PageRank [15]
was used for the static score, and a modified cosine measure for
the dynamic component. Several different pruning strategies were
evaluated in terms of number of disk blocks accessed during query
processing, query throughput per second, and error rate – defined
as the percentage deviation from a full ranking for some k docu-
ments. The strategies that best balanced a high throughput with a
low error rate used two postings lists per term – the first list con-
tains the h postings that contain the highest term value according
to the cosine measure, and the second list contains the remaining
postings. Single-list based strategies had high throughput, but were
also associated with a higher error rate.

To illustrate lossless early termination, let us assume that the fi-
nal score of document d is Fd = α ×Dd + (1−α)× Sd , where
all scores are normalised to 0 . . .1. Thus, for example, α = 0.3,
scores are determined 70% by static factors and 30% by the extent
to which the document matches the query. If, during DAAT pro-
cessing, we are looking at a document d whose static score is Sd
and the k-th best document found so far has a final score of Fk, then
processing can stop if Fk > α +(1−α)× Sd . I.e. even if a docu-
ment not yet encountered achieves a dynamic score of 1.0, it will
not make it into the final top-k.

Additional optimisation can be performed based on the dynamic
score component. In the Weak-AND technique proposed by [2],
an upper bound UBt for contribution to the final ranking score is
recorded alongside each postings list. In the simple case, UBt is
equal to the maximum score contribution from any document in
the postings list for term t. Due to the difficulty of calculating this
upper bound for phrase terms or other complex query-time combi-
nations of postings lists, UBt can be estimated. Document scores
are fully evaluated each time a match is found, and a heap of the
h highest scoring documents is maintained. Once the heap is full,
the score of the lowest scoring document in the heap can be used
in combination with UBt to faciliate early advancement or termi-
nation in postings lists where that term’s score contribution cannot
push the document over the score required to join the heap. A fur-
ther optimisation is to record the upper bound for blocks of post-

ings [11], which allows skipping more documents without loss of
quality.

In practice, processing can terminate quite a bit earlier than the
lossless point with very low deterioration of scores on evaluation
measures. Our experiments explore the effect on search quality of
varying the cutoff point in a basic DAAT approach, similar to the
naive approach in [14]. We use this naive approach as it does not
depend on the composition of the dynamic ranking function, which
allows for the query time customisation and flexibility desirable in
enterprise search.

In this context, lossless early termination can apply only when
the static part of the ranking function used at query processing time
corresponds to that used when the index order was determined. In
enterprise search this is often not the case, because search pro-
files associated with different classes of users may assign different
weightings to the static variables.

In the equation Fd = α ×Dd +(1−α)× Sd , low values of al-
pha are common, but this doesn’t mean that matching the query is
unimportant. In the model we assume, candidate documents must
generally satisfy the AND of the query terms5

We note that in some search engines alpha is a function of the
length of the query – the longer the query the higher the value of
alpha.

2.6 Reordering document IDs
Other studies have investigated the effect of reordering document

IDs on compression. [20] investigated several different orders, and
found that sorting documents by URL is cheap and results in effec-
tive compression. This is because documents with similar URLs
are often topically similar, since they are located in similar directo-
ries on the same server.

Further compression is possible when context information for
term frequencies or position is carried across between documents.
[25] introduced a scheme using this context to achieve additional
compression when indexes were sorted by URL (although they note
their improvement is also likely to apply to other orderings).

2.7 Aims
The aims of the present study are:

• to confirm the findings of Long and Suel on enterprise scale
web collections, using enterprise search test sets and a com-
bination of static features found to be useful in enterprise
search,

• to confirm the findings of Long and Suel for fully resident
and partially resident indexes,

• to quantify the in-practice time costs of reordering all com-
ponents of an existing index.

• to quantify the impact on compression of reordering an index
by QIE instead of crawl order.

3. METHOD

3.1 Retrieval system
We use an experimental variant of a commercial retrieval sys-

tem whose inverted file indexes include word position information.
Postings lists are stored as variable-byte [18] encoded differences.
Skip blocks are not included in the inverted files used in the experi-
ments reported here. The index comprises many files in addition to
5In practice, stopwords may be removed, very long queries may
be truncated and the strict AND requirement may sometimes be
weakened, e.g. when there are few full-AND matches.



Table 1: Datasets used in the experiments. Index size includes
only the index files needed in the present experiments. Other
files used in query suggestion, summary generation etc are not
included. Note that the ClueWeb09-CatB dataset was indexed
with options designed to limit the size of the index. For exam-
ple the gov-Whole index includes a great deal more metadata.
Average query length is in words.

index no. of ave query
Test No. doc.s size (GB) queries length
University 386325 1.2 134 1.37
gov-Popular 2294156 9.1 91 1.25
gov-Agencies 2294156 9.1 100 3.84
ClueWeb09-CatB 50217545 89.6 100 3.10

the basic inverted file: sorted term dictionary, files to support snip-
pet generation, a document table recording document properties
such as length, spam features, recency, URL length, inlink scores,
query-independent content feature scores, web host feature scores
and so on.

The results of experiments reported here are dependent on the
value of α . If it were close to one, there would be little or no
value in reordering the index. If it were close to zero the value of
reordering would be increased. However, arbitrary settings of α

make no sense since they would lead to poor result quality. We
used a configuration of the ranking function in which α = 0.39
which has been shown to produce good results across eleven query
test sets involving eight different enterprise document collections.

Precise details of the ranking function are not important, since it
is constant across all experiments. Dynamic scores are computed
in BM25-like [17] fashion, taking into account document fields and
referring anchortext with additional weight for implicit-phrase and
proximity features. The static score is a fixed weighting of features
derived from the link graph, document URL, document recency,
document quality classifiers, the host domain and the host graph.

3.2 DAAT cutoff
It is possible to specify a stopping condition in terms of the num-

ber of full AND matches found for the query. I.e. stop after z ≥ k
full matches have been found. We explored how response time and
result quality varied with changes in z for different index orders.

In all our experiments the number of results displayed was k =
10.

3.3 Infrastructure
All experiments were run on a laptop computer with a quad-core

CPU (Intel Core i7-2720QM) with a clock-speed of 2.20GHz. It
was equipped with 16GB of RAM and a single 7200 RPM SATA
disk drive. No advantage was taken of the four CPU cores as index
reordering and query processing were run single-threaded. Larger
RAM would be recommended for a production deployment but this
configuration gave us the potential to explore the value of index
reordering on a non-resident index.

3.4 Timing
Timing results reported below represent the elapsed (wall-clock)

time taken to run the query test set in a single execution of the
query processor. Times are elapsed times and include query pre-
processing, query matching, and ranking only. Snippet generation,
spelling suggestion, faceting and related query suggestion func-
tions are not included.

3.5 Datasets
The datasets used are summarized in Table 1. The query / an-

swer sets for University and gov-Popular were generated by
webmasters for those organisations. Queries correspond to popular
and/or business critical queries.

We had intended to use the ClueWeb09-CatB queries and an-
swers from the 2011 TREC webtrack [7]. Unfortunately, once they
were filtered down to exclude answers outside the Category B set,
there were only ten queries with Nav or Key answers. This was
considered too small to support meaningful experiments.

Instead we accessed lists of universities in the US, Canada, New
Zealand, Australia, United Kingdom and Ireland. For each univer-
sity whose homepage and Wikipedia entry were in the ClueWeb09-CatB
collection, we used the name of the university as the query and
recorded the homepage as a Nav answer (grade 4) and the Wikipedia
page as a Key answer (grade 3). In some cases we added multiple
Wikipedia URLs or multiple homepage URLs but treated them as
equivalents – no extra credit for retrieving more than one of them.
Many of the university homepages and some of the Wikipedia en-
tries are not present in the category B collection and those uni-
versities were rejected. However with the addition of a handful
of additional universities from China, Singapore and Denmark we
reached our target of 100 queries. As shown in the table, the queries
are quite long (average: 3.10 words).

Example queries (showing only one of multiple equivalent an-
swers):

University of Otago
www.otago.ac.nz/
en.wikipedia.org/wiki/University_of_Otago
Stony Brook University - State University of New York
www.stonybrook.edu/
en.wikipedia.org/wiki/SUNY_Stony_Brook
University of Cambridge
www.cam.ac.uk
en.wikipedia.org/wiki/University_of_Cambridge

We would be very happy to make this test set available to other
researchers on request.

The gov-Agencies query set is another artificially constructed
set in which the queries comprise the names of agencies within the
government and the answers (Nav only) are the homepages of those
agencies. Query lengths in this set are even longer on average (3.8
words).

4. EFFECTIVENESS MEASURE
For consistency with the TREC Web Track, and because the ar-

guments in [5] are quite persuasive, we used the Expected Recip-
rocal Rank (ERR) measure. Our relevance grades were converted
to be consistent with a grade of 4 for a Nav answer and 3 for a Key
answer, and we used the same function as the TREC Web Track for
maping assessor grades to gain values. Our measurement software
explicitly avoids giving extra credit when multiple equivalent URLs
are returned. For example, a university homepage may have mul-
tiple URLs which lead to the same content. E.g. www.uni.edu/
and uni.edu/.

5. INDEX REORDERING
We built a tool which takes each of the many files comprising

an index and makes a reordered copy of them. The new order is
defined by a text file containing a permutation of the document
numbers 1, . . . , |C|, where |C| is the number of documents in the
collection. The reorder command takes three arguments: old in-
dex, new index, and permutation file.

Small files which are subject to permutation are read entirely into
memory. Then each record is accessed in the new order and written



sequentially to the copy. Naturally, memory space is freed after
each file is permuted.

Some large files (such as the data from which snippets are gen-
erated) may be processed in windows to avoid random disk I/O. In
this case, the output file is divided into windows whose size corre-
sponds to the available physical memory. The input file is scanned
sequentially once for each window. During a scan, records in the
current window are read into memory and reordered. At the end of
the scan, those records are written sequentially to the output file.

The order of the term dictionary does not change, but pointers
from dictionary entries to the inverted file may do so. As each
dictionary entry is processed, its postings list is decompressed, then
permuted, then compressed and written to the output file. Finally,
the pointer from the dictionary entry to the inverted file is updated.

Simple tools were used to create permutation files from the orig-
inal index. The three permutations we investigated were: Reverse,
Random, and QIE (Query Independent Evidence, i.e. descending
order of static score).

6. RESULTS
We first of all report the times taken to reorder the indexes and

then report the results of query processing experiments in which
the DAAT cutoff value is varied.

6.1 Time to reorder collections
Table 2 shows that the time taken to reorder an index is a small

fraction of the original indexing time. Note that times reported
include the reordering of all non-temporary index files, not only
the ones needed to support the stripped-down results presentation
used in our query processing experiments.

6.2 Index size
Unlike [20, 25], we did not observe a change in index size un-

der different document orders. Observed sizes differed by at most
one or two percent. This is likely to be due to the inclusion of
term position information, which does not change between order-
ings, and makes up the bulk of the index. Possibly using context
sensitive compression for posittion information [25], or alternative
index structures for matching phrases [19] would yield changes in
index size after reordering.

6.3 Varying the DAAT cutoff parameter
Figures 1, 2, 3 and 4 show the effect of varying the DAAT cutoff

value on search effectiveness (as measured by ERR on the test sets)
and on computational effort. Elapsed times are the time to process
the full query batch and are the median of five observations.

We used a perl script to determine for each index order, the
DAAT cutoff at which a criterion level of 95% of overall maxi-
mum ERR score was achieved and to report the elapsed time cor-
responding to that cutoff. The results for University are shown
in the following table, with the time ratio expressed relative to the
lowest value in Column 3.

Order Cutoff Elapsed time @ cutoff Time ratio
Original 40 0.132 1.11
QIE 10 0.119 1
Random 640 0.227 1.91
Reverse 1280 0.292 2.45

We see a big effect for the order of the index. Near-maximal
performance is achieved at cutoff 10 for QIE order but not until 640
or 1280 for Random and Reverse orders. Indeed Reverse doesn’t
ever match the maximum QIE effectiveness level. Interestingly,
the original index order (corresponding to approximately breadth-

first crawl-order) performs relatively well, attaining the criterion
at a cutoff of 40. The time ratio column shows that achieving the
criterion perfermance level requires twice as much computation for
the Reverse and Random orders.

For gov-Popular we see even larger differences between the
best order and the worst:

Order Cutoff Elapsed time @ cutoff Time ratio
Original 2560 0.421 3.53
QIE 160 0.141 1.18
Random 2560 0.455 3.82
Reverse 80 0.119 1

The original order for this collection was not crawl order and it
seems to be particularly perverse. By reversing the order we can
reduce the cost of achieving criterion performance by a factor of
3.5! In this case Reverse order slightly outperforms QIE, but the
difference is only small.

The results for gov-Agencies shown in Figure 3 and in the ta-
ble below, show a similar picture despite the fact that queries are
very much longer and artificially created. Criterion performance is
achieved with a much lower DAAT cutoff for QIE order than for
the other orders and Random and Reverse orders require roughly
twice as much computational effort to reach criterion performance.

Order Cutoff Elapsed time @ cutoff Time ratio
Original 80 0.541 1.47
QIE 20 0.369 1
Random 160 0.875 2.37
Reverse 80 0.634 1.72

For ClueWeb09-CatB the picture is rather different to that of the
other three experiments. Figure 4 shows that at very low cutoffs the
QIE and Original orders achieve substantially better effectiveness
than Random or Reverse. However the lines converge more quickly
than for the other data sets and the performance of the QIE order
relative to that of the Original falls away. Results in the following
table appear to show that Original and Reverse orders can achieve
criterion (95% of maximum) effectiveness with only 40% of the
computational effort. The fact that the best order and its reverse
achieve similar performance levels after a while seems interesting.

Order Cutoff Elapsed time @ cutoff Time ratio
Original 2560 12.72 1.50
QIE 5120 20.98 2.47
Random 5120 23.56 2.78
Reverse 1280 8.49 1

In all four experiments, very close to 100% of maximum effec-
tiveness is achieved by cutoff 5120, regardless of index order.

7. DISCUSSION
On the basis of the University experiment, it seems that there

is a very clear advantage to be had from creating a favourable or-
dering of the index and choosing a low DAAT cutoff value. The
gov-Popular and gov-Agencies experiments seem to confirm
the value of this approach. However, the results for the ClueWeb09-CatB
experiment do not show anywhere near as strong an effect for index
ordering.

The QIE order does not perform as well on ClueWeb09-CatB
as in the other experiments. A possible explanation is that the
University , gov-Popular and gov-Agencies test sets are in-
cluded among the eleven test sets used to set the weights for the
static variables in the ranking function, but that ClueWeb09-CatB
is not. Including ClueWeb09-CatB data among the tuning testsets



Table 2: Elapsed time taken to reorder the indexes as a percentage of the original indexing time, including the time taken to determine
the permutation. Reorder times used were the median of 3 observations.

Test Original qie Reverse Random notes
University 100 12.0 8.8 11.8 index originally in crawl order
gov-Whole 100 16.1 14.5 19.5 1index not in crawl order
ClueWeb09-CatB 100 18.2 15.6 18.3 index not in crawl order
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Figure 1: Results for University plotted against DAAT cutoff.
The upper plot shows expected reciprocal rank while the lower
one shows time to process the batch of queries.
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Figure 2: Results for gov-Popular plotted against DAAT cut-
off. The upper plot shows expected reciprocal rank while the
lower one shows time to process the batch of queries.
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Figure 3: Results for gov-Agencies plotted against DAAT cut-
off. The upper plot shows expected reciprocal rank while the
lower one shows time to process the batch of queries.
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Figure 4: Results for ClueWeb09-CatB plotted against DAAT
cutoff. The upper plot shows expected reciprocal rank while
the lower one shows time to process the batch of queries.

may have resulted in different tunings and better performance of
the QIE order in the present experiment.

Without a clear effectiveness result on the ClueWeb09-CatB data,
we are unable to conclude anything useful about differences be-
tween resident and only partially resident indexes.

8. CONCLUSIONS AND FUTURE WORK
We have shown that reordering of an existing index can be achieved

in a small fraction of the original indexing time, even when the
size of the index is much larger than the available RAM config-
uration. Such reordering is of practical importance in collections
where documents are gathered in an unfavourable order and where
the optimal order is only determined during indexing.

Based on three of our experiments it appears that reordering
an unfavourably ordered index allows near-full effectiveness to be
achieved with only a fraction of the computational effort needed to
fully index the collection. These findings essentially confirm the
results of Long and Suel, in a range of different conditions, using
a combination of features found to be effective across a range of
enterprise search collections.

Further work is clearly needed to understand the different out-
come of our fourth experiment. Useful follow up experiments in-
clude using a different query set or learning a better QIE order for
the ClueWeb09-CatB data.

Crucially, we found that reordering indexes that include term po-
sition information does not affect the compressed index size. This
allows for arbitrary orderings without affecting memory residency.

9. REFERENCES
[1] M. Bendersky, W. B. Croft, and Y. Diao. Quality-biased

ranking of web documents. In Proceedings of WSDM 2011,
pages 95–104, New York, NY, USA, 2011. ACM.

[2] A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, and
J. Zien. Efficient query evaluation using a two-level retrieval
process. In Proceedings of CIKM 2003, pages 426–434, New
York, NY, USA, 2003. ACM.

[3] J. Brutlag. Speed matters for Google web search. Technical
report, Google, June 2009. services.google.com/fh/
files/blogs/google_delayexp.pdf.

[4] P. Calado, B. Ribeiro-Neto, N. Ziviani, E. Moura, and
I. Silva. Local versus global link information in the web.
ACM TOIS, 21:42–63, January 2003.

[5] O. Chapelle, D. Metzler, Y. Zhang, and P. Grinspan.
Expected reciprocal rank for graded relevance. In
Proceedings of CIKM 2009. ACM, 2009.

[6] C. Clarke, N. Craswell, and E. Voorhees. TREC 2012 web
track guidelines, 2012.
http://plg.uwaterloo.ca/~trecweb/2012.html.

[7] C. L. Clarke, N. Craswell, I. Soboroff, and E. Voorhees.
Overview of the TREC 2011 Web Track. In Proceedings of
TREC 2011. NIST, 2011.

[8] G. V. Cormack, M. D. Smucker, and C. L. Clarke. Efficient
and effective spam filtering and re-ranking for large web
datasets. Inf. Retr., 14(5):441–465, Oct. 2011.

[9] J. S. Culpepper, M. Petri, and F. Scholer. Efficient in-memory
top-k document retrieval. In Proceedings of SIGIR 2012,
pages 225–234, New York, NY, USA, 2012. ACM.

[10] J. Dean. Challenges in building large-scale information
retrieval systems: invited talk. In Proceedings of WSDM
2009, pages 1–1, New York, NY, USA, 2009. ACM.

[11] S. Ding and T. Suel. Faster top-k document retrieval using
block-max indexes. In Proceedings of SIGIR 2011, pages
993–1002, New York, NY, USA, 2011. ACM.



[12] S. Garcia and A. Turpin. Efficient query evaluation through
access-reordering. In Proceedings of the Third Asia
conference on Information Retrieval Technology, AIRS 2006,
pages 106–118, Berlin, Heidelberg, 2006. Springer-Verlag.

[13] Y. Liu, B. Gao, T.-Y. Liu, Y. Zhang, Z. Ma, S. He, and H. Li.
BrowseRank: letting web users vote for page importance. In
Proceedings of SIGIR 2008, pages 451–458, 2008.

[14] X. Long and T. Suel. Optimized query execution in large
search engines with global page ordering. In Proceedings of
VLDB 2003, pages 129–140, 2003.

[15] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: Bringing order to the web.
Technical report, Stanford, January 1998.
dbpubs.stanford.edu:8090/pub/1999-66.

[16] M. Richardson, A. Prakash, and E. Brill. Beyond PageRank:
machine learning for static ranking. In Proceedings of WWW
2006, 2006.

[17] S. E. Robertson, S. Walker, M. Hancock-Beaulieu, and
M. Gatford. Okapi at TREC-3. In Proceedings of TREC-3,
pages 109–126, November 1994. NIST special publication
500-225.

[18] F. Scholer, H. E. Williams, J. Yiannis, and J. Zobel.
Compression of inverted indexes for fast query evaluation. In
Proceedings of SIGIR 2002, pages 222–229. ACM Press,
2002.

[19] D. Shan, W. X. Zhao, J. He, R. Yan, H. Yan, and X. Li.
Efficient phrase querying with flat position index. In
Proceedings of CIKM 2011, pages 2001–2004, New York,
NY, USA, 2011. ACM.

[20] F. Silvestri. Sorting out the document identifier assignment
problem. In Proceedings of ECIR 2007, pages 101–112,
Berlin, Heidelberg, 2007. Springer-Verlag.

[21] T. Strohman and W. B. Croft. Efficient document retrieval in
main memory. In Proceedings of SIGIR 2007, pages
175–182, New York, NY, USA, 2007. ACM.

[22] K. M. Svore, P. H. Kanani, and N. Khan. How good is a span
of terms?: exploiting proximity to improve web retrieval. In
Proceedings of SIGIR 2010, pages 154–161, New York, NY,
USA, 2010. ACM.

[23] K. M. Svore, M. N. Volkovs, and C. J. Burges. Learning to
rank with multiple objective functions. In Proceedings of
WWW 2011, pages 367–376, New York, NY, USA, 2011.
ACM.

[24] H. Turtle and J. Flood. Query evaluation: strategies and
optimizations. Inf. Process. Manage., 31(6):831–850, Nov.
1995.

[25] H. Yan, S. Ding, and T. Suel. Inverted index compression and
query processing with optimized document ordering. In
Proceedings of WWW 2009, pages 401–410, New York, NY,
USA, 2009. ACM.


