
Document Retrieval Performance On Parallel Systems

David Hawking
Cooperative Research Centre For Advanced Computational Systems

Department of Computer Science
The Australian National University
Canberra, ACT, AUSTRALIA
email: dave@cs.anu.edu.au

Abstract
The problem of e�ciently retrieving and ranking documents from a huge
collection according to their relevance to a research topic is addressed.
A broad class of queries is de�ned and, based on previous work, a par-
allel system architecture capable of handling them is proposed. The
time cost of the steps involved in query processing is analysed and the
space requirements of the data structures used are outlined. The re-
sult is a model, characterised by parameters which can be derived from
machine con�guration information and some simple empirical measure-
ments, from which collection capacities and likely query processing rates
may be determined for given hardware con�gurations. The performance
of a prototype implementation for a 128 node machine is analysed in
terms of the model and conclusions are drawn on the relative impor-
tance of I/O and CPU parallelism.

Keywords: Document Retrieval, Text Processing, Parallel Algorithms

1 Introduction
Locating the documents in a large collection which best satisfy an information need is central
to many modern professions. Automatic retrieval systems now deliver good results and are
regarded as essential tools because manual searches are too time-consuming and too expensive.
Projected growth in size of the largest collections of electronic text suggests that automatic
systems capable of handling up to a terabyte of text will soon be required.

In a state-of-the-art automatic retrieval system, relevance scores are computed for each
document based on the extent to which they match a query derived from the research topic or
information need. Documents are then returned to the user in order of decreasing relevance
score.

This paper assumes that suitable methods of query generation and relevance scoring are
available and focuses on the algorithms and computing resources needed to e�ciently process
queries over collections approaching a terabyte in size. Users will demand that typical queries
should be processed in just a few seconds.

In addition to query processing per se the larger problem of building, from the collection,
the data structures necessary for fast query processing must also be considered. Finally,

collections may be subject to change with time. Consequently, a design is needed which will
avoid the necessity to completely rebuild data structures merely to add, remove or alter a
small number of documents.

The magnitude of the problems of structure building and query processing over terabyte
collections is clearly beyond the scope of current workstations or personal computers. It is
expected that parallel systems will provide a solution.

The only known work addressing retrieval over huge text collections was carried out by
Stan�ll and his collaborators at Thinking Machines Corporation. Stan�ll and Thau [11]
describe parallel retrieval algorithms for the Connection Machine CM2 which they claim are
capable of processing queries (not including proximity operations) over 8 terabytes of text.
The emphasis of their paper (and also a related paper by Stan�ll, Thau and Waltz [12]) is
on the scoring and ranking of documents. They did not address the larger problem of storing
and indexing multiple terabytes of data.

Assuming a distributed memory parallel machine, this paper will formally characterise
query processing for a broad class of queries. Algorithms and data structures capable of
solving the retrieval and structure building problems will be presented and their space and
time requirements will be analysed in terms of the model. Experiments with a prototype
implementation and a scaled-down document collection will be reported and used to explore
the applicability of the model. Finally, the model, supplemented by empirical observations,
will be used to suggest ways in which performance may be improved.

2 Approaches to Parallelising Document Retrieval
Most approaches to parallelising document retrieval divide the collection (or the collection
of document signatures) across the processing nodes. This is true of the Thinking Machines
Corporation work [11, 12], past work at the Australian National University [6, 5] and also the
analyses by Stone [13], Salton and Buckley [9], Cringean et al. [2] and Skillicorn [10].

The system described by Reddaway [8] operates somewhat similarly. Inverted �les are
(logically) partitioned into two parts: a bit map recording which documents contain at least
one occurrence of the term; and a record of positional information. The �rst phase of query
processing consists of boolean operations on long bit maps. In e�ect, thousands of documents
are processed in parallel.

Lofti-Jam and Kent [7] take an alternative approach in which query terms are distributed
across processors. They report a bottleneck due to the processors loading the relevant parts
of the inverted �le from a single central source.

The former approach seems to o�er the following advantages over the latter when dealing
with huge collections:

1. Individual nodes need only access the local fraction of the collection leading to a sig-
ni�cant reduction in number of bits required for pointers. This reduction may enable
use of e�cient machine operations in circumstances in which they would otherwise be
inapplicable.

2. On systems where disk storage is local to the processing nodes, such as networks of work-
stations, no non-local disk accesses are required, with consequent reduction in network
load.

3. Good load balance is easily achieved.

Node 0 0 1 2 3 4 5 6 7

Node 1 0 1 2 3 4 5 6 7

Node 2 0 1 2 3 4 5 6 7

Node 3 0 1 2 3 4 5 6 7

Figure 1: An illustrative collection divided across 4 nodes. The data held by a node is further dividedinto 8 approximately equal sized chunks. Note that there may be variation in chunk sizes and in thetotal amount of data held on the nodes. The set of similarly numbered chunks on the nodes is calleda sub-collection. In this example, sub-collection 3 is shaded.

3 Formal Characterisation of the Problem
A document collection C comprises SC characters, each represented in Bchar bits using a
uniform encoding scheme. The number of individual documents in C is Nd and the total
number of words is Nw. The set of distinct words in the collection (the vocabulary) is V and
the length of the longest word in the vocabulary is Lmax.

A query Q comprises query terms T1; :::Tn which may be words, phrases or word pre�xes.
The relevance score Rd (representable in BR bits) for a document is assigned on the basis of
the frequencies of term occurrences and possibly on the basis of lexical distance separating
occurrences of particular terms. This model of a query does not support arbitrary strings or
regular expressions as terms but is typical of the query types supported by successful current
systems. It supports boolean, vector-space, probabilistic and distance-based models.

Query Q is to be processed over collection C using a parallel (possibly distributed) system
with Nn processing nodes. In addition to these nodes, there is a separate node (a front-end or
separate workstation) which runs the user interface and broadcasts query commands to the
processing nodes. Distributed memory is assumed.

The system is further assumed to be equipped with a high performance disk system either
in the form of a disk array or in the form of local disks connected to some or all processing
nodes. Total disk bandwidth is BW characters/sec. and the disk system is capable of I I/O
operations/sec. on average. Total available disk space is Sdisk characters.

Communication between nodes is necessary to determine global collection frequencies (if
needed in relevance scoring) and to produce global relevance rankings. Time taken to calculate
a global sum of frequency counts (tgsum) and time to calculate a global maximum of relevance
scores (tgmax) are the key parameters here. Communication between the user interface and
the processing nodes (required to broadcast queries and to return lists of relevant documents
and the retrieved documents themselves) is assumed not to be a bottleneck.

4 Proposed Design
Faloutsos [3] surveys available methods for accessing text data. Of these alternatives, an
inverted �le method is chosen for the problem described here, taking into account the analyses
of Stone [13] and Salton and Buckley [9]. Accordingly, the following approaches to data
structure building and query processing are now proposed.

Approach to Data Structure Building
1. Distribute responsibility for the collection across the Nn processing nodes, taking care

to achieve good load balance.
2. Further reduce the problem by breaking the data held on a node into Np pieces whichcan be individually indexed. These pieces will be called chunks. Documents will not be

split across chunks. Chunks will have a size of approximately Schunk characters, chosento provide acceptably rapid index rebuilding in the case of collection changes without
overloading the �lesystem with an unmanageable number of small �les. Controlling
the chunk size also limits the amount of primary memory required for e�cient index
building. Across the whole machine, the ratio of the largest chunk to the average will
be denoted as rchunk. Figure 1 illustrates the two-dimensional division of the data
represented by steps 1 and 2.

3. For each chunk, construct an inverted �le index and dictionary.
4. On each node, construct a super dictionary from the dictionaries for all of the chunks

associated with the node.

Approach to Query Processing
Step 1 The user interface accepts a search query and broadcasts it to all nodes.
Step 2 Each node updates the appropriate document accumulators according to the cho-

sen relevance scoring algorithm.
Step 3 The nodes combine to produce a merged list of relevant documents in order of

decreasing score and pass this (or the �rst k items) back to the user interface.
Items in the list are tagged in such a way as to permit e�cient and unambiguous
retrieval if requested by the user.

Step 4 When the user selects a document for viewing, the user interface directly requests
it from the appropriate node.

E�cient support for query processing as outlined above will require the data structures
listed below. In each case an attempt is made to identify the storage requirements across the
whole machine for the uncompressed data structures.

Data Structures Required
Raw Data: Needed to enable viewing of retrieved documents. Space required is by de�-

nition SC �Bchar bits.
Document Table: Allows documents to be rapidly located on disk during relevance scoring

and viewing by the user. Since each node is responsible for approximately SC=Nncharacters of data, log2(SC=Nn) bits are needed for each pointer. Total space
required across the machine is thus Nd � dlog2(SC=Nn)e bits.

Document Accumulators: Record the relevance score for each particular document as it
accumulates during query processing. Accumulators may be provided:
1. for every document; or
2. only for documents which achieve a non-zero score; or

3. only for the �rst NDA documents to do so.
Assuming the �rst case, the storage required will be Nd �BR bits.

Inverted File Indexes Record the location of term occurrences within a chunk to the
character level (word level locations would save a small number of bits per entry).
Assuming that index entries are byte o�sets within the corresponding chunk, the
number of bits required for each entry is determined by the number of characters
in the largest chunk. The number of bits is given by dlog2(rchunk �Schunk)e. Thetotal number of index entries across the whole machine is given by the number of
words in the entire collection, and hence total space required is dNw�log2(rchunk�Schunk)e.

Super Dictionary Lists all words in the collection and enables e�cient term frequency
discovery and fast index access. Each node's part of the super dictionary contains
one record for each of the jVnj distinct words found in all of the chunks associ-
ated with node n. If the super dictionary is represented as a rectangular table,
then each record will contain space for the maximum length word (Lmax �Bcharbits) plus an [o�set, length] pair for each of the Np chunks associated with the
node. The number of bits required to record the length �eld is determined by
the frequency Fmax of the most common word on that node, hence dlog2(Fmax)e.The number of bits required to represent the o�set is determined by the largest
number of entries in an index and may be estimated as (rchunk�Nw)=(Nn�Np).Total storage is thus estimated as

SSD =
NnX
n=1

jVnj � (Lmax �Bchar +Np � dlog2(Fmax �Nw � rchunk
Nn �Np)e) (1)

Figure 2 shows the relationship of these structures diagrammatically.

4.1 Analysis of Query Processing
There are three basic algorithms in query processing: term location; proximity; and document
ranking.

Term Location Algorithm for each Node
Step 1 Process the incoming search command (broadcast to all nodes).
Step 2 Locate the term in the sorted, memory-resident word list using a binary search.
Step 3 If there is an entry for the term in the word list, read the corresponding row from

the superdictionary �le. (One I/O operation per node.)
Step 4 For each of the sub-collections which contain occurrences, read a block of point-

ers into memory from the appropriate (pre-opened) index �le. (Up to Np I/O
operations per node.)

Step 5 For each pointer transferred in step 3, write a tag indicating from which sub-
collection it originated and update the relevance score of the document in which
it occurs. The latter is performed during a synchronised scan of the occurrence
pointers and the list of documents.

There are a total of N_d individual documents
 in C. For design
purposes, we say N_d le 10^
9, allowing the average document length
to be
 as short as 10^3 characters (half a page) bu
t no shorter.
Let N_w be the total number of
words in C and V be the set of
distinct word
s in the collection (the vocabulary). Let L_
{max}
be the length of the longest word in th
e vocabulary.

text of sub-
collection 2

index for sub-
collection 2

There are a total of N_d individual documents
 in C. For design
purposes, we say N_d le 10^
9, allowing the average document length
to be
 as short as 10^3 characters (half a page) bu
t no shorter.
Let N_w be the total number of
words in C and V be the set of
distinct word
s in the collection (the vocabulary). Let L_
{max}
be the length of the longest word in th
e vocabulary.

dictionary for
 sub-collection 2 vocabulary 2

super dictionary for
four sub-collections

words

venture

vocabulary

NIL 0

2

sub-collection 0 sub-collection 1 sub-collection 2 sub-collection 3

Figure 2: Index, dictionary and superdictionary structures associated with a single processing node.The raw text of sub-collection 2 is represented at the bottom. It has been indexed and a dictionaryhas been prepared. The information from the latter has been merged into the super dictionary shownat the top. The dictionary may now be discarded. In this example, \venture" which occurs in at leastone of the sub-collections but not in sub-collection 2, has no entry in the dictionary for sub-collection2 but has a zero entry in the column of the superdictionary corresponding to sub-collection 2.

Step 6 Form a global count of the number of occurrences and return it to the front-end.

Step 1 involves communication from the user interface and the time to complete it is
essentially constant (t1 = c1). Step 2 requires no I/O and no communication. The time to
complete it depends upon the log of the amount of data per node. (t2 = m2 � log2(SC=Nn)

Steps 3 and 4, if performed, are I/O intensive and require between two (one super dictio-
nary and one index read) and (Np + 1) � Nn (one super dictionary and Np index reads per
node) I/O operations. The data which must be transferred comprises No index entries, takinga time in seconds estimated as:

No � dlog2(rchunk � Schunk)e
BW

Total I/O time is therefore expected to be:

t3&4 = (Np + 1)�Nn
I + No � dlog2(rchunk � Schunk)e

BW (2)

Step 5 involves no I/O. The amount of CPU time required to perform it should be linear
with the number of occurrences (t5 = m5No). Step 6 requires a single global summation and
a communication to the user interface (t6 = tgsum + c6).

Proximity Algorithm for each Node
A number of sorted, memory-resident lists of pointers are sequentially scanned to locate values
lying within a range of each other. The time taken is proportional to the sum of the lengths
of the lists.

Document Ranking Algorithm
Step dr1 Each node sorts a complete list of document identi�ers in order of decreasing

accumulated relevance score. Then, if the Nr most relevant documents were
requested, steps dr2-dr4 are repeated Nr times.

Step dr2 A global maximum is computed of the highest scores from each node.
Step dr3 The �rst part of the document is read from disk and scanned for the document

identi�er.
Step dr4 The document identi�er and the score are communicated to the user interface.
The time for step dr4 is a small constant and may be neglected. The CPU component of

the time taken is made up of the times for step dr1 and for the scanning part of dr3. The
time taken to scan the head of the document may be approximated as a constant, cdr3

tdr:cpu = mdr � (Nd=Nn)� log2(Nd=Nn) +Nr � cdr3
Step dr3 of the algorithm does not exploit I/O parallelism as only one document is selected

and read at a time. Consequently the I/O time is dominated by the necessity to perform
Nr seeks, each taking tseek seconds. The I/O time including the communication is thus
approximated as:

tdr:io = Nr � (tgmax + tseek)

4.2 Analysis of Data Structure Building
The index construction algorithm used in the experimental work reported below keeps both
raw data and index in primary memory during construction. A linear scan of the data in a
chunk locates all wordstarts (transitions from non-alphabetic to alphabetic characters) and
makes an array of pointers to them. These pointers are sorted such that the case-folded words
they point to are in ascending order. A single scan through the index array then su�ces to
create the dictionary for the chunk. The CPU cost of index building was empirically studied
in [5] and found to lie between linear and n log n approximations. The I/O costs are those of
reading in the raw data and writing out the data structures at the end.

Super dictionary construction is essentially a series of pairwise merges of the dictionaries
for each sub-collection. Both the CPU cost of each merge and the amount of data read and
written should be directly proportional to the sum of the sizes of the partial super-dictionary
and the new dictionary. As there are Np merges (the �rst a trivial copy), the total data readis given by:

SSD
Np �

NpX
i=1

i
where SSD is given in equation 1 above. An identical amount of data is also written. Com-
putational time should be directly proportional to the amount of data.

5 Experiments With A Prototype Implementation
A recent version of PADRE (the Parallel Document Retrieval Engine) [1] for the Fujitsu
AP1000 implements a prototype of the model described above. Compression has not been
implemented and considerable scope exists for space and possibly time improvements.

Table 1: Values of parameters �xed by the hardware con�guration or by implementation decisions.
Parameter Symbol Value in the Experiment
Number of Nodes Nn 128
Character Representation BR 8
Representation of Relevance Scores BR 32
No. of Sub-collections Np 6
Maximum Word Length Lmax 24

Table 2: Parameter values empirically determined for the prototype implementation using the testcollection and the test con�guration.
Parameter Symbol Value
Collection Size SC 3:33� 109 char.s
Number of Documents Nd 1:1� 106
Number of Words Nw 5:0� 108
Collection Vocabulary Size jV j 8:7� 105
Average Chunk Size SC=Nn=Np 4:34� 106
Chunk Imbalance rchunk 1.31
Speed of Data Structure Building vdsb 2:1� 106
Aggregate Disk Bandwidth BW 5� 107 char.s/sec.
Total Disk I/O Rate I 3� 103 op.s/sec.
Time to Compute Global Sum tgsum 175� 10�6 sec.
Time to Compute Global Maximum tgmax 233� 10�6 sec.

Experiments have been conducted with a small collection (3 gigabytes) on an AP1000
con�guration comprising 128 SPARC 1+ nodes, each with 16 Mbytes of local primary mem-
ory. Thirty-two of the nodes have 500 Mbyte disks connected via a SCSI interface. Due to
competing demands on the disks, a total of only 10 gigabytes of space was available for the
test.

CDs 1-3 of the TREC [4] collection, with manual indexing information removed, consti-
tuted the test collection. The test query is shown in �gure 3. It requires the location of 3
groups of alternative literal patterns anchored at word starts (index points), the computation
of a 3-way proximity relation (near) between the groups, the assessment of relevance of all
documents based on matches resulting from these operations and the creation of a ranked list
of the 20 most relevant documents. It uses a total of 20 literal terms.

Tables 1 and 2 show the values of the model parameters which applied during the test.

5.1 Query Processing Performance
Using the current implementation, processing the task query over a six-component super
dictionary was observed to take 10.23 sec., of which locating occurrences of the 20 terms took
9.21 sec., the proximity relation took 0.10 sec. and ranking the documents took 0.73 sec. All
times reported are elapsed times as would have been observed by a user.

It was observed that the time to perform an unsuccessful search (zero occurrences), that
is the time to perform steps 1,2 and 6 of the term location algorithm in section 4.1, was no
more than 0.01 sec.

{proximity 1000}

{wsmode start}

{casesensitive 0}

{weight 0}

anyof "economic |economical |profit |profitable |profits |dollars "

anyof "recycle |recycling |recycles |reprocess |reprocesses

|reprocessing |conversion |converting |converts "

anyof "glass |paper |plastic |aluminum |cardboard "

{weight 5}

near 3

top 20

Figure 3: The test query used in experiments with the prototype.

Figure 4 shows that infrequently occurring terms are located quickly but that once a
certain frequency is reached, location time is fairly constant up to the most frequent term
encountered in this experiment.

Even for the most commonly occurring term, the total data transferred from the index was
only 6� 105 characters, corresponding to a transfer time of only 0.012 sec. Consequently, the
number of I/O requests is the key component in the time taken for steps 3 and 4 of the term
location algorithm due to the magnitude of seek delays and rotational latencies. Following the
analysis in section 4.1 above, the number of I/O requests will be 7� 128 = 896 for frequently
occurring terms.

On the basis of the value given above for maximum I/O rate I, it would be expected
that 896 reads should take 0.3 sec. but the observed time was 0.55 sec, presumably due to
contention and uneven load balance between disks. In this application, then, a more realistic
value of I is I = 896=0:55 = 1:6� 103 op.s/sec.

Considering the computational cost of step 5, the time taken to locate each of the 14 terms
with a frequency of more than 5,000 (those very likely to occur in all of the 6 � 128 = 768
chunks) ranged only from 0.49 - 0.59 sec. The bottom three of these observations averaged
6,500 occurrences and 0.56 sec. to locate whereas the top three averaged 110,000 occurrences
and also 0.56 sec. to locate. It is concluded that the CPU time for this step was being masked
by variations in I/O time and was negligible for the range of term frequencies encountered in
the test.

5.2 A Counter-Intuitive Method for Accelerating Query Processing
Clearly, query processing in our test environment is I/O bound. Increasing I by a factor of
four by providing each node with a disk could be expected to reduce time to process the test
query to 3.48 sec.

Remarkably, the model suggests that a similar e�ect could be achieved by reducing the
number of CPU nodes to 32! The explanation is as follows. The number of I/O operations is
determined by the number of chunks (Nn�Np). This product may be reduced by decreasing
either the number of nodes or the number of sub-collections. Reducing either will produce
large gains in overall time taken, up to the point where the costs of the CPU intensive steps
in the algorithm become comparable to the I/O costs. Note that reducing the number of
I/O requests does not alter the total I/O data transferred. Consequently the time to actually
transfer the data remains constant.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 20000 40000 60000 80000 100000 120000 140000 160000

E
LA

P
S

E
D

 T
IM

E
 (S

E
C

.)

NUMBER OF OCCURRENCES

Figure 4: The relationship between term frequency and time to locate all occurrences for all the termsin the test query when processed over the test collection on the test machine.

5.3 Discussion of Parallelism in Query Processing
Had it been possible to index the test collection as 32 chunks (one per disk), at most one
I/O request per disk would have been required to locate all occurrences of each term. In this
case the I/O time to locate a term would of the order of 0.013 sec. instead of the 0.55 sec.
observed, despite the fact that disk latency would still account for 75% of the time. Further
increasing the degree of I/O parallelism would achieve limited bene�ts as query location time
asymptotically approached disk latency. However, the ultimate goal of this work is to scale up
to collections of the order of a terabyte in size and the amount of data to be transferred for a
given query term is expected to scale with the size of the collection. Consequently, increasing
the degree of I/O parallelism would be highly bene�cial for a very large collection.

The amount of CPU time required to locate a query term is likely to be much smaller than
the 0.01 seconds reported above as this �gure was measured on the front-end and includes
communications and time-sharing delays. Its contribution to the overall query processing time
would not be expected to increase much above the present 20 � 0:01 = 0:20 sec. even if the
number of processing nodes were reduced to match the degree of I/O parallelism.

However, the CPU intensive components of the proximity and document ranking algo-
rithms would be expected to dominate when the degree of CPU parallelism had dropped to
this level.

5.4 Data Structure Building
In the test a total of 2,127 sec. (elapsed time) was required to process the test collection. Of
this, 1,800 sec. was required for index and dictionary building and 327 sec. for constructing
the super dictionary.

It was observed that the breakdown between CPU time and I/O time in index and dic-
tionary building was 1,560 to 240 respectively. Unfortunately, isolating the two components

is more di�cult in the case of super dictionary construction. The observed size of the super
dictionary is 8:55� 108 characters and, according to the analysis above, the quantity of data
read and later written was 8:55 � 108=6 � 21 = 2:99 � 109 characters, giving a combined
reading and writing transfer time of 120 sec. With the bu�er sizes used, an estimated total of
32,500 separate I/O requests were issued, giving a time due to latency of 20 seconds (based
on the revised I/O rate given earlier). The breakdown of CPU time to I/O time for super
dictionary building is thus 187 to 140. Combining the two sets of CPU and I/O times gives
an overall breakdown of 1,747 to 380. In summary, data structure building is heavily CPU
bound, 82% of the total time being spent in computation.

6 Conclusions and Future Work
The performance of a parallel retrieval system is dependent upon many factors including speed
and degree of parallelism of CPUs, memory and I/O system.

The algorithm presented above achieves speed in data structure building by dividing the
collection into chunks small enough to be indexed entirely in primary memory. This strategy
allows rapid response to collection changes, makes good use of parallelism and restricts the
number of bits needed to represent pointers.

Unfortunately, in the experiment reported above, the strategy can be seen to in
ict a
heavy penalty during query processing due to the large number of I/O requests necessary to
locate occurrences of terms in the query. It has been argued that this penalty may be reduced
either by increasing the degree of I/O parallelism or by increasing the chunksize. In scaling
up to a terabyte of data, both of these measures will be needed to ensure good performance
and contain hardware cost.

Increasing the degree of I/O parallelism up to the number of chunks will give optimum
query-processing performance, provided that there is adequate CPU speed. Reducing I/O
parallelism below this level will cause I/O time to rise in inverse proportion to the number
of disks. There is a trade-o� between I/O speed in query processing and responsiveness to
collection changes. The latter is essentially a function of the number of sub-collections.

The fully memory-resident nature of the current indexing algorithm is the root cause of the
small chunksize and hence the large number of separate I/O requests in query processing. An
algorithm which relaxed the constraint without signi�cant penalty would be highly bene�cial.
One is currently under development. In the absence of such an algorithm it would be very
productive to increase the amount of memory per node.

In the reported experiment, data structure building was seen to be CPU intensive. This is
partly due to the fact that the nodes used were slow by current standards, being equivalent to
Sun workstations dating from 1990. The optimum balance between CPU and I/O parallelism
on a system handling a terabyte will obviously depend upon the power of the CPUs employed,
the characteristics of the algorithms used and the relative costs of increasing CPU as opposed
to I/O parallelism. If disk systems and nodes are provided in equal numbers, lack of CPU
power is not likely to limit query processing performance.

Compression techniques deserve more consideration than they have been a�orded here.
On the basis of results elsewhere in the literature, compression may reduce by a factor of four
the total disk space requirements.

Already, the model presented above has given several worthwhile insights into the running
of the prototype implementation and how to improve it. More work is needed to re�ne and
validate it further. Much larger experiments are necessary to con�rm that the model and the
algorithms will successfully scale to the terabyte level. To facilitate this, a project is under
way to develop a signi�cantly larger test collection.

Acknowledgments
The disk-based indexing and super dictionary machinery used in this paper were implemented
by my colleague Peter Bailey to whom I owe considerable gratitude. The work also relies
heavily on the HiDIOS parallel �le system developed by Andrew Tridgell and David Walsh.

References
[1] Peter Bailey and David Hawking. A parallel architecture for query processing over a

terabyte of text. Technical Report TR-CS-96-04, Department of Computer Science,
The Australian National University, Canberra, http://cs.anu.edu.au/techreports/
1996/, 1996.

[2] Janey Cringean, Roger England, Gordon Manson, and Peter Willett. Network design
for the implementation of text searching using a multicomputer. Information Processing
and Management, 27(4):265{283, 1991.

[3] Christos Faloutsos. Access methods for text. ACM Computing Surveys, 17(1):49{74,
1985.

[4] D. K. Harman, editor. Proceedings of TREC-4, Gaithersburg MD, November 1995. NIST
special publication 500-236.

[5] David Hawking. The design and implementation of a parallel document retrieval engine.
Technical Report TR-CS-95-08, Department of Computer Science, The Australian Na-
tional University, Canberra, http://cs.anu.edu.au/techreports/1995/index.html,
1995.

[6] David Hawking and Peter Bailey. Parallel document retrieval engine (PADRE) web page.
http://cap.anu.edu.au/cap/projects/text_retrieval/, 1997.

[7] Mohammad Lofti-Jam and Alan Kent. Ranking on parallel computers using a compressed
in-memory index. In Justin Zobel, editor, Proceedings of the Australian Document Com-
puting Symposium 1996, pages 55{62, Melbourne, Australia, March 1996. Department of
Computer Science, RMIT, Melbourne.

[8] S. F. Reddaway. High speed text retrieval from large databases on a massively parallel
processor. Information Processing and Management, 27(4):311{316, 1991.

[9] Gerard Salton and Chris Buckley. Parallel text search methods. Communications of the
ACM, 31(2):202{215, 1988.

[10] D.B. Skillicorn. A generalisation of indexing for parallel document search. Department
of Computing and Information Science, Queen's University, Kingston, Canada (skill@
qucis.queensu.ca), 1994.

[11] Craig Stan�ll and Robert Thau. Information retrieval on the Connection Machine: 1 to
8192 gigabytes. Information Processing and Management, 27(4):285{310, 1991.

[12] Craig Stan�ll, Robert Thau, and David Waltz. A parallel indexed algorithm for infor-
mation retrieval. In Proceedings of the ACM SIGIR Conference, Cambridge MA. ACM,
New York, 1989.

[13] Harold Stone. Parallel querying of large databases: A case study. IEEE Computer,
20(10):11{21, 1987.

