
The Design And Implementation Of A Parallel Document

Retrieval Engine

David Hawking
Co-operative Research Centre For Advanced Computational Systems,

Department Of Computer Science,
Australian National University, ACT 0200, Australia

phone: 61-6-249 3850, fax: 61-6-249 0010, e-mail: dave@cs.anu.edu.au

October 10, 19941

1Date paper completed. Publication as a technical report was delayed for various reasons.



SUMMARY

Document retrieval as traditionally formulated is an inherently parallel task because the document
collection can be divided into N sub-collections each of which may be searched independently.
Document retrieval software can potentially exploit the power and capacity of a large-scale parallel
machine to improve speed, to extend the size of the largest collection which can be processed, to
respond quickly to changes in the document collection and/or to increase the power and expres-
sivity of the retrieval query language. This paper includes discussion of the issues involved in the
design of a practical parallel document retrieval engine for a distributed-memory multicomputer
and a description of the implementation of PADRE, a retrieval engine for the Fujitsu AP1000.
Performance results are presented and scope of applicability of the techniques is discussed.

KEYWORDS Parallel computing, Text, Document retrieval, Pattern matching

Introduction

Document Retrieval

Sifting relevant documents from among a large collection is of great importance in almost all pro-
fessions, particularly investigative journalism, academic research, business, public administration
and the law. Traditionally, such tasks have been carried out by human researchers or research
assistants.

The increasing availability of computerised research collections, coupled with advances in com-
puter technology, have given rise to the possibility of carrying out such research not only faster but
better. Computerised retrieval systems are now able to perform complete searches over very large
collections of text (provided it exists in electronic form), without reliance on manually generated
indexing information.

Performance of a retrieval system is traditionally measured in terms of precision and recall,
which are calculated by dividing the number of relevant documents retrieved by, respectively, the
number of documents retrieved and the number of relevant documents actually in the collection. As
reported by Harman[1], state-of-the-art retrieval systems now achieve quite acceptable performance
on these measures.

Computerised document retrieval systems rank documents according to estimated relevance to
the research topic in question. Precision is usually high at the top of the list but falls away as
more documents are retrieved. By the time all relevant documents have been retrieved (complete
recall), precision has typically fallen almost to zero.

The reader is referred to Faloutsos[2] for a survey of document retrieval methods.

Other Related Operations On Collections Of Text

In linguistic and lexicographic research, users of free-text retrieval software are more interested
in �nding the context in which particular patterns occur. PAT software from the University of
Waterloo [3, 4] and the PADDY program[5, 6] (an earlier version of the present software) have both
been used to perform this type of operation on the 533 Mbyte markup source of the Oxford English
Dictionary. Linguistic operations may also include parsing, and stylistic analysis or comparison.

A second category of operation over text data is editing, including operations such as pattern
substitution, document insertion and deletion, purging of documents matching some criterion, and
automatic generation of markup. These operations are almost essential in the maintenance of
useful large-scale document collections.

Finally, there is a class of content analysis operations exempli�ed by automatic classi�cation
and automatic generation of abstracts.

Applications of Parallelism

Retrieving the relevant documents from a large collection is an inherently parallel task, whether or
not the documents are scanned by humans or by computers. It is obvious that the collection can

1



be divided into N sub-collections, each to be scanned by a di�erent reader. If the retrieval method
involves full-text scanning, it is equally obvious that the job will be completed approximately N
times as fast by N readers as by one.

Parallel machines, particularly the Connection Machine, have been used to speed up document
retrieval and to extend the size of the largest collection which can be processed[7, 8, 9]. However,
the processing speed and RAM capacity of large parallel machines can also be used to respond
quickly to changes in the document collection and/or to increase the power and expressivity of the
retrieval query language. The work described here focuses on these aspects.

The Architecture Of The Fujitsu AP1000

The Fujitsu AP1000 is a distributed-memory parallel machine consisting of up to 1,024 SPARC
processors (called cells) inter-connected by a 25 Mbyte/sec two-dimensional torus network and
also by a 50 Mbyte/sec broadcast network. Each cell supports 16 Mbytes (soon 64 Mbytes) of
RAM, giving a maximum total con�guration of 16 gigabytes (soon 64 gigabytes). SCSI disks
may be connected to all or to a subset of cells. At present, all other I/O is controlled by a
Sun front-end machine called the host. The architecture of the AP1000 is more fully described
elsewhere.[10, 11, 12]

Aims

The �rst aim of the work reported here was to design an architecture for a parallel document
retrieval engine capable of:

1. E�ciently identifying and retrieving documents relevant to a research topic;

2. E�ciently searching for linguistic and lexicographic patterns and displaying them in context;

3. E�ciently performing systematic editing operations over a collection of documents;

4. Supporting the content analysis and advanced linguistic operations described above; and

5. Demonstrating robustness in the presence of imperfect document markup and/or non-textual
inclusions.

The second aim was to demonstrate the suitability of the proposed architecture by implementing
a substantial part of the design on the Fujitsu AP1000 and observing its performance.

Major Design Issues

The Role Of Inverted File Indexes

Many retrieval systems for serial machines rely on inverted �le methods in order to achieve ac-
ceptable retrieval speed over large collections. Unfortunately, serial index-based systems pay a
high cost in time and space to build the inverted �le. Appendix 1B of the TREC-2 proceedings[13]
showed that building inverted �les for 2 gigabytes of the TIPSTER collection[14] on serial machines
required between 4 and 100 hours of computer time and between 863 and 1500+ Mbytes of storage
(before compression). It is self-evident that the more information which is preserved in the index,
the greater is the storage required. It is also intuitive that the more information preserved, the
richer can be the retrieval query language based upon it.

A parallel machine can operate fast enough in full-text scanning mode to obviate indexes and
signatures. However, parallelism can also dramatically speed the process of building inverted �les.
Masand and Stan�ll [9] were able to use the Connection Machine CM5 to build an inverted �le for
the same TIPSTER data in 20 minutes. PADRE software running on a 512-cell Fujitsu AP1000
is capable of performing the same task in a little over 90 seconds. (See below.)

In fact, whether or not to use inverted �les is a question largely independent of whether pro-
cessing is done serially or in parallel. In both forms of implementation, an index dramatically

2



speeds the retrieval process but increases the di�culty of supporting powerful search terms such
as regular expressions and word su�xes.

In general, it is recommended that a parallel document retrieval engine should build an inverted
�le if all the conditions listed below are met:

1. Search terms which can be conveniently handled using index-based searches form a large
percentage of the query load.

2. Su�cient memory is available; this is of greater signi�cance when data and index are stored
in RAM.

3. The number of queries likely to be processed in the interval between changes to the document
collection is large. Even with a supercomputer, index building time may overshadow search
time savings on a highly dynamic collection.

4. The \downtime" required for index building can be tolerated. A commercial information
bureau o�ering retrieval service over a highly dynamic collection may not be able to a�ord
to suspend query processing while indexes are rebuilt.

Use of indexes for simple terms need not exclude the use of more powerful terms based on
full-text scanning methods.

The Use Of Random-Access Memory

The advantages of rotating memories such as disks over random-access memories (from now on
called RAM) of the same capacity are purely economic. These advantages are magni�ed if the stor-
age must be non-volatile. However, rotating memories are less convenient and generally introduce
signi�cant delays.

The performance gains associated with RAM permit the use of powerful and 
exible document-
processing methods which would be otherwise impractical. Currently, certain commercial and
intelligence applications can justify the extra costs implied by these methods.

It is now feasible, if not easily a�ordable, to base a document retrieval application entirely
in RAM. There are now machines with su�cient RAM to comfortably accommodate the largest
document collections currently being processed by any computerised means.

It has been this author's stated contention since November 1992 [6] that the year 1997 would
see the emergence of parallel machines with 4 terabytes of RAM, su�cient to hold, index and
process the equivalent of all the text in a library of more than a million volumes. At the time of
writing, it is possible to order a machine with 2 terabytes of RAM, though the largest system in
existence has a very much smaller con�guration.

In a given application, it may be found necessary to process a larger collection of documents
than can be accommodated in the RAM available. In these circumstances, rotating memory can
be used to augment the RAM, hopefully without sacri�cing essential functionality or performance.

Applicability of Compression Techniques

Increasing the amount of data it is possible to process with a given amount of memory is par-
ticularly attractive when using a RAM-based approach. Zobel and Mo�at[15] describe the use of
a semi-static, Hu�man-derived compression scheme which has many desirable properties for this
application. It reduces space required by a large factor (greater than 3 in a quoted example) yet,
unlike adaptive schemes, allows decompression to begin at intermediate points in the �le.

Decompression speed is reported to be good (400 kbyte/sec on a SPARC-2) relative to alter-
native schemes. However, current AP1000 cells operate at only 55% of the speed of a SPARC-2,
suggesting that decompression of 10 megabytes (uncompressed) using this method on such a cell
would take of the order of 45 sec, though the rate reported by Zobel and Mo�at may have been
slowed by disk accessing. This speed is quite adequate for an index-based retrieval method, but
not fast enough to be practical in a system using full-text scanning methods.

3



A compression scheme which allowed dramatically faster decompression, almost certainly at the
expense of some memory saving, would make compression a viable option for a full-text scanning
method. Even better would be a compression scheme which allowed fast pattern matching over
the compressed data, without decompression.

Kent et al[16] describe a method for compression of inverted �les. As inverted �les require
large amounts of memory, this could represent a signi�cant saving even if the text itself were not
compressed. However, the potential memory savings in a system which supports linguistic-context
oriented searching will be signi�cantly reduced by the need to preserve term position information.

Dependence Upon Document Collection Characteristics

Ideally, a document processing system will be able to operate on totally unstructured text but
also able to make use of useful structure if it exists, for purposes such as identifying documents
by title or headline, and selecting documents on attributes like publication date or authorname.
For relevance-based retrieval, abstracting etc. the minimum markup requirement is a means of
identifying the boundaries between documents.

The most appropriate de�nition of what constitutes a document depends upon the nature
of the operation being performed. A document may in fact be a hierarchical organisation of
sub-documents, some of which are contextually linked to their neighbours. An ideal document
processing system should be able to adapt its de�nition of a document according to the task at
hand.

An encyclopaedia, dictionary or casebook is a single document for the purpose of addition to or
removal from the document collection and from the point of view of sharing common attributes but
is too large to be a useful single unit for retrieval or abstracting. For these latter purposes, each
entry or case from these omnibuses might be considered to constitute a separate document. A query
relating to \volcanoes" should return entries on vulcanology, rather than the entire Encyclopaedia
Brittanica. Even worse, a computer generated one-page abstract of the latter is likely to be useful
only as an amusement.

An ideal document processing system should also be robust with respect to \errors" in the
document collection such as typographical errors, use of multiple alternative spellings or lexico-
graphical representations, and errors in markup. It should also tolerate absence of markup and use
of di�erent mark-up standards in di�erent sub-collections, as well as the presence of non-textual
documents and attachments. The cost of great robustness is, however, likely to be very high.

The Implementation Of PADRE

Substantial progress has been made on the implementation of a parallel document retrieval engine
(PADRE) for the Fujitsu AP1000. PADRE is entirely RAM-based and employs full-text scanning
methods as well as inverted �les. PADRE is now a useful tool for both document retrieval and
linguistic research, though not all desired functionality has yet been implemented. The structure
of the program is su�ciently general to accommodate all envisaged extensions.

A brief description of current capabilities follows. More complete descriptions are to be found
in Hawking.[17, 18]

Overview of PADRE capabilities

Present functionality includes linguistic searches, traditional document retrieval, and basic manip-
ulation of document collections.

PADRE supports three categories of primary search term (pattern):

� Literal strings (using Boyer-Moore-Gosper (BMG) string matching);

� Numeric ranges (matches strings of digits whose numeric value lies in a nominated range, eg.
1788..1901); and

4



� Regular expressions (using GNU regular expression code)

The result of any PADRE search operation is called a match set which comprises an array of
pointers into the text where each pointer references the �rst character of a match.

PADRE also supports three categories of compound search term:

� Component search (eg. pattern within component component name);

� Proximity searches (eg. pattern1 near pattern2); and

� Set operations, which allow pairs of match sets to be combined using di�erence, union and
intersection operations. Set operators allow named as well as immediate operands.

PADRE allows the user to display the lexicographic context of all matches in the current
match set (or just a sample of them). In addition, searches can be grouped into research topics
and documents may be retrieved or identi�ed according to their ranked relevance to the current
topic.

Finally, PADRE includes a number of document collection maintenance operations:

� Load raw or compressed data from a variety of sources;

� Merge pairs of collections;

� Display characteristics of the current collection;

� Delete all documents matching some criterion;

� Purge all text between speci�ed start and end markers; and

� Dump the current collection in raw or compressed format to a variety of destinations.

Note that multiple resident collections are supported. This permits additional documents to
be easily merged with an existing collection. It also enables independent querying of separate
collections with low context-switch overhead, a feature which might be important in a bureau
environment.

PADRE Architecture

PADRE consists of a host program which runs on the host computer and a cell program which is
replicated on each of the AP1000 cells. The cell programs accept commands and data from the
host, carry out operations on the data and transmit results to the host. The host program manages
the cells and interacts with the user. Communication between cells and between cells and the host
is mediated by the standard Fujitsu message passing library.

Discipline Of Cell Free Space Management

Each cell has a �xed amount of RAM, 16 Mbytes in current models. Figure 1 shows how the
memory is used. Memory requirements of Kernel and PADRE are determined when the PADRE
cell program is loaded. Consequently fss is a �xed point. Furthermore, Ring Buf size is �xed
and the message passing discipline described below prevents the size of Sys Msg from exceeding
a speci�ed limit, thus allowing the value of fse to be �xed at load time. PADRE is thus able
to reserve all space between fss and fse, labelled as Free Space, for raw data, compressed data,
indexes, document tables, component tables, relevance tables and match sets. The size of Free
Space typically approximates 12 Mbytes per cell.

Each loaded document collection is distributed across the cells. The piece of a collection held
by a particular cell is referred to as a chunk.

As shown in �gure 2, Free Space is divided into four areas. The ensemble is managed more-
or-less according to a stack discipline and so are the areas labelled Textbase Space and Match-set

5



fse

0 16M

fss

Kernel PADRE Sys Msg Ring BufFree Space

Figure 1: Top Level Allocation Of Cell Memory. Kernel represents the space used by the cell operating
system, PADRE represents the space needed for the PADRE cell program and its stack, and Sys Msg and
Ring Buf the space needed for message-passing bufers. Note that Ring Buf is not used by PADRE and
may be of zero length.

fss fse

Match-set SpaceTextbase Space Doc-desc Space Table Space

Figure 2: Top Level Allocation Of PADRE Free Space. The four subdivisions of this space are described
in the text and in subsequent �gures.

Textbase 1 Textbase 2 Textbase 3 Textbase 4

2

4

Textbase descriptors

Pointer

1

TBMAX

which_tb

num_tbs

Length

Figure 3: Example of use of Textbase Space when four document collections are loaded and collection 2 is
current. Note that each collection is preceded by a header which includes the size of this cell's chunk and
the string which is used as a start-of-document marker.

6



Pointer

1

Length

which_set

MAX_NUM_SETS

4

match

fsematchpoints

sets

Figure 4: Example con�guration of Match-set Space. Match-set Space is considered as a stack of match-
points, shown growing to the right. Four match sets are shown, each de�ned by the index of the �rst
matchpoint in the set and the number of matchpoints in the set. Match indicates top of stack and
sets[which set] indicates the start of the current match set.

Space. Figure 3 shows multiple collections loaded in Textbase Space. If a new collection is added,
the size of Textbase Space increases and the other areas are reset.

Doc-desc Space holds an array of pointers to the starts of all documents and a correspondingly
sized array crm of 
oating-point document relevance metrics. Whenever a reset occurs, or when the
user elects to use a di�erent collection, the current document collection is scanned for document
starts and crm is zeroed.

Table Space holds the inverted �le for the current collection and, if any components have been
de�ned, tables of component start and endpoints. If the user either requests that an inverted �le
index be built for the current collection or de�nes one or more document components Match-set
Space will be reset and Table Space will grow.

Match-set Space holds a stack of match sets. Figure 4 shows a typical con�guration. Each
search results in a match set which is added to the top of the match set stack. Set operations and
proximity operations may replace the top n items on the match set stack with a new set. Match-set
Space is reset when any of the other areas grows or when the user anounces a new topic.

If a compressed document collection is loaded or if the current collection is to be dumped in
compressed form, the Free Space above Textbase Space temporarily holds the compressed data.

Methods Of Loading Data

A document collection may be loaded from a single �le on the host [5, 6, 19], from �les on cell
disks[19] or from hierarchies of compressed �les such as those used to distribute the TIPSTER
collection.

In the latter case, the �le directory is recursively scanned and �les which pass a simple �le-type
and �lename �lter are loaded one by one. The �rst �le goes to cell 0, the second to cell 1, and so
on with wraparound when the last cell has received its data. Once a cell receives all of a �le, it
starts to decompress it, decompression proceeding in parallel with input to other cells. Time to
load and decompress is thus normally the sum of the i/o time plus the time to decompress the last

7



�le.
In order to simplify search and retrieval operations, PADRE prevents articles being split across

more than one cell. Document collections loaded from a single uncompressed �le are initially
arbitrarily split into equal sized chunks but a process of shu�ing[19] re-combines partial documents
before searching commences.

The Importance Of Load Balancing

In general, time taken for full-text scanning is proportional to the amount of data to be scanned.
Furthermore, the time taken to scan a document collection distributed over the AP1000 is the time
taken by the slowest cell to search its chunk of the collection. The slowest cell will normally be
the one with the most data. A measure of load imbalance LI is de�ned as the ratio of maximum
chunk length to average chunk length. Reducing it to 1.0 will not only increase speed of searching
by a factor of LI but will also permit the processing of a maximal amount of data.

In general, the constraint that documents may not be split across cells prevents the achievement
of perfect load balance.

Load imbalance is a signi�cant factor in handling real world document collections in PADRE.
Naive loading of parts of the previously mentioned TIPSTER collection on AP1000 con�gurations
may result in load imbalance measures exceeding 2.0 with consequent severe degradation of capacity
and performance. This collection includes at least one document of over 2 Mbytes in length. Such
long documents are not only inconvenient for retrieval but may signi�cantly impair the ability to
balance load.

Implementation Of Load Balancing

The great computational cost of obtaining optimal load balance over a collection exceeding a
million documents is is not justi�ed by the performance gains likely to be achieved relative to a
simpler, less optimal approach.

The current version of PADRE includes a user command to balance load. The algorithm
assumes that the document collection is not ordered, allowing documents to be transferred between
arbitrary pairs of cells. At present, however, it only considers documents at the tail of a chunk for
transfer to another cell.

In essence, all-to-all communication is used to form a table (replicated in each cell) of each cell's
chunk size. The table is sorted and cells at the top of the table pair with those at the bottom, top
with bottom, 2nd top with 2nd bottom and so on. The cells in each pair negotiate a number of
whole documents (possibly zero) to be transferred between them so as to minimise the maximum
of the two resulting sizes. These pair-wise transfers occur in parallel.

The PADRE loadbalance command may be issued repeatedly until LI, displayed after each
operation which might have changed it, has fallen to a satisfactory level or until the algorithm
ceases to be e�ective.

A Message Passing Discipline

Data may pass in signi�cant quantities between the cells and between cells and the host during
the following operations:

� Loading a document collection;

� Dumping a document collection;

� Assembling complete documents;

� Load balancing; and

� Returning retrieved documents

8



To control the amount of memory required for system message bu�ers, blocks of data trans-
mitted during these operations are broken into packets whose length does not exceed a PADRE-
speci�ed threshold. This threshold is normally set at 0.5 Mbyte but could be reduced to to say
0.1 Mbyte without signi�cantly reducing speed. Packets after the �rst are not transmitted until
receipt of the predecessor is acknowledged.

Address Space Limitations

In general, the number of bits reserved for character addresses in a processor or �lesystem may
limit the size of document collection which can be processed. Parallelisation along PADRE lines
extends the limit by a factor of N by dividing the document collection into N chunks, each of
which may be independently addressed. PADRE currently allows su�cient address bits to address
up to 4 gigabytes per cell. PADRE also uses double-precision 
oating point numbers to compute
and report the overall size of the collection.

Indexing

PADRE software includes the ability to build an inverted �le comprising a sorted array of pointers
to the �rst character of each indexable term.[5] It should be noted that, in the parallel implemen-
tation, there is no need to form a complete inverted �le. Each cell needs only an index to its own
chunk of the collection.

During retrieval operations using the inverted �le, the binary search method is used to locate
literal terms. If an index has been built (in response to user command), PADRE will use it in
subsequent searches for occurrences of literal terms which are anchored at word starts.

Use Of Global Reduction Operators

The Fujitsu AP1000 provides hardware support for global reduction operators such as global sum,
global maximum, and global minimum. These operations have been found useful in:

1. Relevance ranking across the complete document collection;

2. Reporting overall collection statistics; and

3. Calculating term frequencies across the entire collection.

Software Testing Issues

PADRE is a moderately complex system (of the order of 10,000 lines of C code) comprising two
interacting programs each implemented as approximately ten modules. Complexity is increased
by the necessity to use message passing.

Coding errors in the handling of special cases or boundary conditions in large data sets are
likely to manifest as plausible but incorrect results with no indication of error. Accordingly, a
con�dence testing procedure has been adopted to ensure credibility of results and reduce the risk
of introducing undetected errors when changing algorithms or adding functionality.

The testing procedure is based on an arti�cial data �le with known checksum. The test script
�rst checks the checksum, and replicates the data a number of times. It then runs PADRE to
process a wide selection of commands over the replicated data and checks the results against a
manually veri�ed set of results. Commands and data are designed to exercise as many special cases
in the code as possible.

Error handling

Any software system which is o�ered as a production user tool should incorporate sensible mecha-
nisms for detecting, reporting and recovering from error conditions. Relative to a serial machine,
error detection and recovery on a parallel machine is likely to introduce more complexity, and bring

9



with it a greater requirement for user-friendly error-reporting. Use of a parallel machine opens
the possibility that each of hundreds or thousands of processors may detect the same error. The
designer of parallel software must avoid 
ooding the user with full details of every such occurrence.

In the PADRE context, errors detected in the cell program are treated specially. Such errors
include:

� exceeding array limits or available memory due to loading, matching etc.,

� error returns from message passing calls,

� error returns from i/o calls to cell disks,

� errors related to characteristics of the document collection, such as unmatched component
markers, missing start-of-document markers etc.

A number of techniques for reporting errors have been found useful in PADRE.

Spatial Aggregation

Some tests for error conditions are made in highly parallel sections of the code, in which all cells
perform the same test. In these cases in the PADRE model, all cells call a synchronised-error
reporting routine err cnt() after performing a test for an error condition. They supply a code
for the error, a 
ag indicating whether or not the error condition was detected and additional
information (such as the value of the array index which over
owed) in the form of the integer.

Err cnt() synchronises all cells, then uses global reduction operators to calculate the number
of cells which reported the error and maximum and minimum values of the additional information.
The results are passed back to the host program as a specially-typed message for reporting (with
appropriate explanation) to the user.

Temporal Aggregation

Some tests for error are not synchronised across all cells. In these cases, spatial aggregation is
not feasible and another mechanism is employed to prevent message bombardment. In essence,
each error is reported as it occurs up to a speci�ed number of occurrences. After this threshold
is reached, errors are counted but no longer reported. On program termination, a summary of
unreported errors is displayed.

Handling Cell Error Reporting On The Host

Ideally, cell-detected errors would be processed as exceptions on the host but this is not currently
implemented. Instead the PADRE host program is engineered to call the wait for msg() function
whenever a message is expected from a cell. Wait for msg() receives messages of all types, and
handles error reporting to the user if intervening error packets are received.

PADRE Performance

Times reported in this section are elapsed wall-clock times measured by the host computer. They
are measured in this way to give a realistic indication of the delays which would be experienced by
a human user. Measurements taken in this way are potentially subject to considerable in
uence
from other activity on the host machine, but the individual observations contributing to averages
reported below in fact showed relatively little variability.

10



Time To Load Data

The bandwidth of the link between the host computer and the cell array is currently a bottleneck.
Consequently, the rate of loading a document collection (using compression and memory mapping
techniques) is unlikely to exceed 3.3 Mbyte/sec. This �gure is based on the lowest of ten
observations of time taken to load 243 Mbytes of US patent descriptions.

A rudimentary implementation of software to load document collections from cell-connected
disks exists but needs radical optimisation. Using a con�guration consisting of 128 AP1000 cells, 32
of which are connected directly to a disk, an aggregate loading speed of approximately 13 Mbyte/sec
has been observed. With compression, this would increase to approximately 32 Mbyte/sec. These
�gures are dramatically less than the peak speed of the hardware.

Potentially, each disk should be able to transfer approximately 2 Mbyte/sec. of raw data, trans-
lating to a data loading speed of 4-5 Mbyte/sec per cell if the data were stored in compressed form.
An aggregate loading speed in excess of 2 gigabyte/sec. on a maximal AP1000 con�guration
(512 cells with disks) may be achievable.

Time To Balance Load

The amount of time taken for a single load balancing operation depends upon the amount of data
exchanged between the cells and the amount of network contention. It also depends upon the size
of the largest resulting chunk, as, after load balancing, the collection must be scanned for document
starts and relevance metrics for each document must be reset.

Load balancing times are small in comparison with those for loading and indexing and almost
always pay o� in reduced scanning times. It is likely that the longer it takes to balance load,
the greater is the payo�, because large-scale data exchanges imply signi�cant improvement in load
balance. However this conjecture has not been studied empirically.

Time To Build Inverted Files

Figure 5 shows the relationship between indexing speed and the number of processing cells. As can
be seen, speed up is close to linear. This may seem surprising as the time-dominant operation in
building an index for a chunk is sorting. PADRE uses the well-known quicksort algorithm whose
average running time is dominated by a term proportional to n log n, where n is the number of
word starts in the chunk, assumed proportional to the chunk size. The e�ect of increasing the
number of processing cells is to reduce the amount of data to be indexed in each cell. One would
therefore expect a non-linear relationship.

To investigate this phenomenon further, index building times for a wider range of chunk sizes
were measured and plotted in �gure 6. Also plotted were m1n and m2n log n, where m1 and m2

were chosen to make the plots pass through the extreme observed data point. As can be seen,
the two theoretical plots do not signi�cantly depart from each other in the relevant range and the
observed data points lie between them.

Three observations were made of the time taken to index the �rst two CDs of the TIPSTER
collection using a 512-cell AP1000. After removing manually generated indexing information, the
size of the collection to be indexed was approximately 1.98 gigabytes. The total number of entries
in the index was 327,222,379 and the average of the three index-building times was 92.18 sec.
The three observations di�ered from each other by no more than 0.01 sec.

Search Times

Figure 7 graphs the relationship between search time and number of processing cells for a literal
term (Boyer-Moore-Gosper search) and an index-based search. As can be seen, search times for the
BMG case increase as the number of processing cells decreases, whereas the indexed times appear
to remain relatively constant. It is almost certain that the times for indexed searches show a similar
relationship to number of cells as in the BMG case but the e�ect is lost due to the way times are
measured. The time taken for an actual indexed search is believed to be negligible compared to

11



1

2

3

4

5

6

7

8

30 40 50 60 70 80 90 100 110 120 130

I
n
d
e
x
i
n
g
 
s
p
e
e
d
 
(
M
b
y
t
e
s
 
i
n
d
e
x
e
d
/
s
e
c
.
)

number of processing cells

Figure 5: Rate of index building over a 243 Mbyte collection of patent descriptions as a function of number
of AP1000 cells employed. Each point is the mean of �ve observations.

0

20

40

60

80

100

120

0 1000 2000 3000 4000 5000 6000

t
i
m
e
 
(
s
e
c
.
)

size of largest chunk (thousand characters)

m2 n log (n)
m1 n

observed

Figure 6: Time taken to build an inverted �le index for eight di�erent subsets of the TIPSTER data as a
function of the size of the largest chunk. Each point is the mean of �ve observations. A 128-cell AP1000
was used.

12



0

0.2

0.4

0.6

0.8

1

1.2

1.4

30 40 50 60 70 80 90 100 110 120 130

t
i
m
e
 
(
s
e
c
.
)

number of processing cells

BMG search
indexed search

Figure 7: Relationship of search times over a 243 Mbyte subset of the TIPSTER data (US Patent descrip-
tions) with number of processing cells. Each point is the mean of �ve observations.

overheads which are independent of the number of processing cells, such as job scheduling on the
host.

To illustrate PADRE's performance when searching for non-literal terms, measurements were
conducted of the time taken to search for a regular expression designed to �nd all words containing
exactly two occurrences of the letter i:

>> regexp "\<[a-hj-z]*i[a-hj-z]*i[a-hj-z]*\>"

over 1.98 gigabytes of the TIPSTER data on a 512-cell AP1000. The time taken to process this
query was 72.73 sec.. This compares with times of 3.55 sec. and 0.77 sec. to �nd all occurrences
of the string walrus using the regular expression code and the BMG code respectively. Each time
quoted is the mean of �ve observations. The greatest observed deviation from the mean was 0.01
sec.

Responsiveness To Changes In Document Collection

In an experiment designed to measure PADRE's responsiveness to additions to the document
collection, 509 Mbytes of data from the Wall Street Journal was loaded into a 128-cell AP1000 and
used for searching. An additional 10 Mbytes of data (Associated Press reports) was subsequently
loaded from a disk on the host and merged with the existing collection. The combined collection
was then balanced across cells. The mean of three measurements of time elapsed between issuing
the load command and the display of results of the �rst post-merging search was 18.7 sec. Roughly
half of the time taken was due to loading from the host.

In a further experiment designed to measure responsiveness to deletions, the interval between
the issue of commands to remove all documents including the word \computer" and the completion
of the next search was 9.2 sec., averaged over three measurements. The document collection
reduced in size by 57 Mbytes.

13



No. of processing cells 512
Document collection size 5,471,469,449 characters
Load time over ethernet 87 min.
Max. cell memory gained by load balancing 1.41 Mbyte per cell

Operation Min. Time (sec.) Max. Time (sec.) Ave. Time (sec.) No. Obs.
literal search 1.16 4.75 1.88 25
union 1.27 2.49 1.74 16
near 3 0.05 0.11 0.07 6
near 2 0.01 0.05 0.04 9

Table 1: Timings and sizes observed during processing of an arti�cial document collection 5.10
gigabytes in size using a 512-cell AP1000.

PADRE Limits On Document Collection Size

As previously mentioned, PADRE free space on the current AP1000 approximates 12 Mbytes.
Loading 10 Mbytes of documents per cell allows su�cient room for the match-sets generated by a
typical complex topic, but not for an inverted �le. As the largest possible AP1000 con�guration
comprises 1,024 cells, 10 gigabytes is a practical bound on the size of data which may be processed
on a current AP1000 using PADRE. When the amount of RAM per cell increases to 64 Mbytes,
this bound is expected to increase by a factor of 5, rather than 4, to 50 gigabytes because the
per-cell memory overhead of kernel, PADRE code and message bu�ers remains constant.

PADRE has not been tested on a 1,024 cell con�guration but tests using 5 gigabytes of data on
a 512-cell machine have been carried out successfully. Timings for this run are tabulated in �gure
1.

Discussion And Conclusions

Timing results presented for PADRE show that a parallel distributed memory machine permits
fast retrieval operations on large collections of documents using otherwise impractical full-text
scanning methods. It has been demonstrated that these methods allow simple implementation of
powerful query terms and quick response to alterations in the document collection.

Implementation and experimentation to date has been restricted to the achievement of the �rst
two goals for a document retrieval system which were listed in the aims section above. However,
PADRE's ability to delete text between nominated start and end markers gives an indication
that achievement of the third goal will not be di�cult. It is contended that the design and basic
framework of PADRE are adequate to support the achievement of all �ve goals, but further work
is needed to demonstrate this.

The PADRE concept is readily portable to other distributed memory parallel machines such
as Connection Machine CM5, IBM SP2, Intel Paragon and Cray T3D. It would be relatively easy
to recode PADRE to use a portable message passing library such as MPI or PVM, without great
loss of e�ciency. Taking this approach would allow fairly easy porting to a possibly heterogeneous
network of workstations.

However, using a loosely coupled and loosely managed network of machines makes load balanc-
ing di�cult, reduces reliability and increases the di�culty of achieving the global synchronisation
necessary to ensure consistent rankings over the entire collection.

PADRE is envisaged as a tool for a large-scale commercial environment in which fast searches
can be made over a complete data collection subject to controlled evolution. In such an envi-
ronment, authoritativeness of results and ease of management are critical, and therefore a tightly

14



coupled machine is preferred.

Acknowledgements

Fujitsu Laboratories provided access to AP1000 machines in the Fujitsu Parallel Computing Re-
search Facility and assisted in various ways. Robin Stanton and Paul Thistlewaite gave support
and advice. Peter Bailey and Michael Hiron worked on elements of PADRE code. GNU regular
expression code from the Free Software Foundation is incorporated in PADRE. The National In-
stitute of Standards and Technology (U.S.A.) and various copyright holders provided access to the
TIPSTER data collection. I extend my sincere thanks to all these people and organisations.

Recent work on PADRE has been supported by the Co-operative Research Centre for Advanced
Computational Systems (ACSys).

References

[1] D. K. Harman `Overview of the Second Text REtrieval Conference (TREC-2)', in The Second
Text REtrieval Conference (TREC-2) US Department of Commerce, NIST Special Publication
500-215, pp. 1-20 (Mar 1994).

[2] C. Faloutsos `Access Methods For Text', Computing Surveys, 17, (1) (Mar. 1985), pp. 49-74.

[3] H. Fawcett PAT 3.3 User's Guide, University of Waterloo Centre for the New Oxford Dictio-
nary, Waterloo, Ontario, Feb 1991

[4] G. H. Gonnet, R.Y. Baeze-Yates and T. Snider Lexicographic indices for text: Inverted �les
vs. PAT trees, Report OED-91{01, University of Waterloo Centre for the New OED and Text
Research, Waterloo, Ontario, Feb 1991.

[5] D. A. Hawking `High Speed Search of Large Text Bases On the Fujitsu Cellular Array Pro-
cessor', in Proceedings of the Fourth Australian Supercomputing Conference pp. 83-90. Gold
Coast, Australia, (Dec 1991).

[6] D. A. Hawking `PADDY's Progress (Further Experiments in Free-Text Retrieval on the
AP1000)', in Proceedings of the First Annual Users' Meeting of Fujitsu Parallel Computing
Research Facilities, paper ANU-8, Kawasaki, Japan, (Nov 1992).

[7] C. Stan�ll and B. Kahle `Parallel free-text search on the Connection Machine system', Commun.
ACM 29, 12 (Dec. 1986), pp. 1229-1239.

[8] C. Stan�ll and R. Thau `Information retrieval on the Connection Machine: 1 to 8192 gigabytes',
Technical Report DR90-3, Thinking Machines Corporation, Cambridge, Mass., 1990

[9] B. Masand and C. Stan�ll `An Information Retrieval Test-bed On The CM5', in The Second
Text REtrieval Conference (TREC-2), US Department of Commerce, NIST Special Publication
500-215, pp. 1-20 (Mar 1994).

[10] T. Horie, H. Ishihata, T. Shimizu and M. Ikesaka. `AP1000 Architecture And Performance
Of LU Decomposition,' in Proc. 1991 Int'l Conf. On Parallel Processing, pp. 634-635, August
1991.

[11] H. Ishihata, T. Horie, S. Inano, T. Shimizu and S. Kato `CAP-II Architecture,' in Proceedings
of the First Fujitsu-ANU CAP Workshop, paper 1, Kawasaki, Japan, (Nov 1990).

[12] T. Horie, M. Ikesaka and H. Ishihata `Interconnection Network For Multiprocessors', in
Proceedings of the First Fujitsu-ANU CAP Workshop, paper 2, Kawasaki, Japan, (Nov 1990).

[13] D. K. Harman The Second Text REtrieval Conference (TREC-2), US Department of Com-
merce, NIST Special Publication 500-215, (Mar 1994).

15



[14] D.K. Harman `Overview of the First Text REtrieval Conference (TREC-1)', in The First
Text REtrieval Conference (TREC-1) US Department of Commerce, NIST Special Publication
500-207, pp. 1-20 (Mar 1993).

[15] J. Zobel and A. Mo�t `Adding Compression To A Full-Text Retrieval System', in Proceedings
of the Fifteenth Australian Computer Science Conference, Hobart, Australia, pp 1077-1089 (Jan
1992).

[16] A. Kent, A. Mo�t, R. Sacks-Davis, R. Wilkinson, and J. Zobel `Compression, Fast Indexing,
and Structured Queries on a Gigabyte of Text', in The First Text REtrieval Conference (TREC-
1), US Department of Commerce, NIST Special Publication 500-207, pp 229-244 (Mar 1993).

[17] D. A. Hawking PADRE User Manual, Department of Computer Science, Australian National
University, Canberra, Australia, Oct 1994.

[18] D. A. Hawking `Searching For Meaning With The Help Of A PADRE', To Appear In Pro-
ceedings Of The 1994 Text Retrieval Conference (TREC-3) | In Preparation

[19] D. A. Hawking and P. Bailey `Towards a Practical Information Retrieval System For The
Fujitsu AP1000)', in Proceedings of the Second Fujitsu Parallel Computing Workshop paper
P1-S, Kawasaki, Japan, (Nov 1992).

16


