High Speed Search of Large Text Baseson the Fujitsu Cellular Array Processor

David Hawking
Computer Science Department
Australian National University

GPO Box 4, Canberra ACT 2601
(dave@anucsd.anu.edu.au)

Abstract

The Australian National University hasrecently acquired an “experimental” 64 cell, distributed memory,
cellular array processor (CAP) under acollaborative research agreement with Fujitsu Research L aborato-
ries. Itsconsiderable processing power and very largetotal amount of memory (2 gigabytesat thetime of
the conference) render feasible abrute—force parallel approach to freetext retrieval. The brute—force ap-
proach offersgreat flexibility and, becauseit obviatesthe need for time—consumingindex building, iswell
adapted to rapidly changing text bases. Very encouraging results have been achieved with apartial CAP
emulation of an existing index—based serial program for dictionary research. A 550 megabyte dictionary
was used asthe exampletext base. Dramatic speed—ups have been achieved with aparallel implementa-
tion of conventional indexing techniques in which building the index is achieved in minutes rather than
days. It isargued that practical systems built on CAP-like architectures could perform at impressive
speeds on frequently changed text bases whose size is measured in tens of gigabytes.

1. Introduction

There are many real—world applications which require high speed searching of large collections of text for por-
tionscontai ning specified words, parts of words, phrases or combinationsof them. Examplesinclude searches of
legal casesor statutes, searches of scientific abstracts, searches of newspaper reportsand dictionary or other lan-
guageresearch. Thetext to be searched may be asingle document or acollection of documents. The quantity of
text to be searched istypically at least a significant fraction of a gigabyte.

Thework reported in the present paper has been carried out in collaboration with the Australian National Dictio-
nary Centre (ANDC) using the markup source of the Oxford English Dictionary (OED) asthe exampletext base.
It isasingle document of 550 megabytes!

Thefirst approachesto searching large text bases only allowed retrieval of documentswherethe searchterms(in
this case alwayswords or phrases) matched author—supplied keywords. In many applications, however, thisap-
proachisimpractical or toorestrictive. Later freetext retrieval systems matched searchtermsagainst all termsin
the documents.

Today, there are many freetext retrieval systemsin use on sequential computerswhich allow very rapid searches
using automatically computedindex files. STATUS, usedinlegal retrieval applications, and PAT, devel oped for
dictionary research at the University of Waterl 0o, aretwo examples. Gonnet et al [2] review aternative types of
index for this application and report on the methods used in the PAT program.

There are several disadvantages of sequential index—based approaches:

1. Index filestake up large amounts of disk space,

2. Index filestake avery long timeto compute, with elapsed times measured in days for text bases of
hundreds of megabytes. Systemsrelying on suchindexesare consequently unableto copewith rap-
idly changing text bases.

3. Theindex isusually built in away which precludes some profitable searches.

Theadvent of large memory parallel computers opened the way to moreflexible search techniques. Stanfill and
Kahle [5] reported in 1986 on a parallel free-text search method developed for the then fledgling Connection

Machine. They addressed the problem of how to find relevant [small] documents among alarge set and used the
technique of surrogate coding to reduce the test of whether aword was present in adocument to simplelogical
tests. Inthis model of retrieval, documents are ranked for relevance according to how many of a set of search
terms (generally words) defined by the searcher are found in them.

Several more recent papers (for example Stone [8], Waltz et a [9], Salton and Buckley [3], Stanfill [4], Stanfill,
Thau and Waltz [7] and Stanfill and Thau [6]) have since focussed on analyzing and/or improving the perform-
ance of parallel methods for extracting relevant documents from very large collections. Stone and Salton and
Buckley have disputed the claimed massive benefits of parallelismintext retrieval. Stoneargued that use of in-
verted index files on a serial machine permitted equal or better performance than non-indexed paralel ap-
proaches. Inresponse, Stanfill, Thau and Waltz and Stanfill and Thau have since used inverted indexesin combi-
nation with massive parallelism.

Usingindexing techniques on the Connection Machine, Stanfill and Thau [6] makethe attenti on—attracting claim
that “currently available hardware can deliver interactive document ranking on databases between 1 and 8192
gigabytesof text”! However, ranking (finding the documents matching aset of search termsmost closely) isnot
themost difficult part of the problem. Asan estimate of the size of datawhich could be handled by apractical text
retrieval system, 8192 gigabytesis unrealistic by two or three orders of magnitude because:

1. Stanfill and Thau assumethat theinverted index could be stored in aseriesof Data Vaultsattached to
a Connection Machine CM-2. They state that a CM-2 is limited to 8 simultaneously active Data
Vaults and that the largest CM—2 configuration extant has only 3. However, even theindex for an
8192 gigabyte (8 terabyte) collection of documents would occupy 64 Data Vaults (about 3 tera-
bytes)!

2. Inconventional index—based approaches, thetimeto createtheindex dwarfsretrieval timeby many
ordersof magnitude. Evenif the problemsassociated with storing and accessing 8 terabytesof data
and 3 terabytes of index can be solved, thetimetaken to build theinverted fileislikely tobesolong
that documents eventually retrieved would be of historical interest only!

The aim of the present work isto investigate the usefulness of alarge-memory parallel (MIMD) machinein the
types of text searches needed by people writing and updating dictionaries or doing research on language. The
functions of an existing sequential text search system have been emulated on the Fujitsu AP1000 using both in-
dexed and brute—force methods and practical performance comparisons carried out.

2. Text Searching In Dictionary Writing and L anguage Research

Theretrieval problemsarisingindictionary and other language research do not conform to themodel assumed by
most of the papers cited in the introduction. Dictionary research does not involve the retrieval of sets of docu-
mentsrel evant to sometopic of interest but rather thelocationin context of all occurrencesof wordsor phrases of
interest. It isthe meaning and usage of aword rather than the meaning of a document which isimportant.

The Oxford family of dictionaries are availablein marked up electronic form. The mark—up uses SGML (Stan-
dard General Markup Language) conventionsto delineate thelogical structure of the document and tag the con-
tent. Itisalso usedtodefinethetypeset form of theprinted dictionary. A typical dictionary file consistsof alist of
entries starting with the tag <e> and ending with </ e>. Inside an entry isaheadword (preceded by <hw> and
followed by </ hw>) followed by apotentially long list of other components giving etymology, definitions, sub-
ject area, and supporting quotations with date, source and author information.

TheAustralian National Dictionary Centre usesthe PAT program, described by Fawcettin[1], toassistitsdictio-
nary production. PAT runson a Sun SPARCstation. The Centreiscurrently producing an Australian version of
the Concise Oxford Dictionary and using PAT in various ways.

PAT assistsin maintaining consistency by finding all occurrences of alternative forms of the same expression eg.
“Airforce”, “airforce” and “ Air Force”. PAT isalso used to extract al of the entriesin aparticular subject area
(eg. <sj >Conp. Sci . </ sj >)tobesent for vetting by subject specialists. Furthermore, PAT isused to find
all occurrences of British and Imperial terms (eg. “cooker” (= stove) and “cubic furlong”) prior to context—de-

pendent substitution of Australianterms. LECTOR, aPAT companion program, typesetsthelocated entriesona
screen window.

If original source material such as newspaper clippingsisavailablein electronic form, PAT can be used to search
for quotations to support a particular usage of aword.

Dictionary and languageresearchers may usethe quotationsembedded in larger dictionariesto study word usage.
For example, using PAT, itisatrivial matter tofind all wordswith aHebrew etymology and not too difficult tofind
all the quotations dated between 1500 and 1750 which include the words “ shall” or “will”.

Before searches of the dictionary of interest can be made using PAT, the dictionary must be processed by acom-
panion program (PATBL D) to produce atree—structuredindex. Theindex—building processisvery timeconsum-
ing and theresult isan index file of comparable sizeto the original dictionary. To savetime and disk space, the
dictionary is normally indexed only at word starts. Sop words such as“and” and “the” are normally excluded.

With the appropriateindex filesin place, the dictionary researcher can use PAT to search for patterns or combina-
tions of patterns either in the whole range of the text or in components of it delineated by SGML commands or
other markers. PAT recordsall the matchpointsencountered asanumbered set and reportsthe number of matches.
Theuser canthen request that all (or asample) of the matches be printed out with aspecified number of characters
of preand post context. Thedefault modeisthat thematchesare printed inlexicographic order which meansthat,
if the appropriate pattern is chosen, PAT can generate full or partial concordances of the text.

PAT can also be asked to find the most frequently occurring words or phrasesin thetext (signif command) and to
find the longest repetition (Irep command) in the text.

3. Search Commands Supported by PAT

Basic Search Patterns

a. Alitera string. All words starting with the string are considered matches. Eg. “gun” will match
gunboat, gun, gunwhale etc. To match just gun, the search pattern must be “gun”.

b. Alexicographicrange. All wordsstarting with asequenceof characterslexicographically withinthe
defined range are considered matches. Eg. “gua’..“guz” will match gun, gut, gulley, gunboat etc.

c. A numeric range. All “words’ starting with a sequence of digits numerically within the defined
range are considered matches. Eg. “1897”..2001" matches 1898, 1924, and 1927034.
Complicating factors

d. ablankinapatternistakentomatch any sequence of word-separator charactersand stopwords. Eg.
“wind rain” matcheswind and rain

e. charactersinthedictionary may be mapped to other charactersfor the purposes of matching but al-
ways appear unchanged when matches are printed. For example, control characters are mapped to
spaces and case folding is applied during matching.

Combinations of Patterns

f. Thenear, not near, fby and not fby commands can be used to search for combinations of pat-
terns. Eg. “hat” near “coat " matchesall occurrencesof hat that are preceded or followed by
coat within a proximity range (80 characters by default).

Search Within Components

Thekeywordswithin andincludingareusedto restrict searchesto aparticular type of component such asaquota
tion or an etymol ogy.

g. “rhubarb” within docs Q
matches all occurences of rhubarb within quotation components.

h. docsQ including “rhubarb ”
matches the beginning (ie. <qgt>) of all quotation components including rhubarb

Set Operations

Thelist of matches produced by aPAT searchiscalled aset. PAT provides meansto name setsand to producethe
union, difference or intersection of two sets.

Previously generated results can also be used in component search commands. 1n the following example taken
fromthe PAT manual [1],” %" isused to refer to theimmediately preceding results. Theaim of the seriesof com-
mandsisto find the names of dictionary entries which include quotations including the word science:

i. >>docsQincluding “science”
j. >>docsE including %
k. >>docsHL within %

4. Statusof theParallel Implementation

The Fujitsu AP1000 program PADDY emulates many of the functions of PAT and serves as an experimental ve-
hiclefor ideatesting and performance comparison. In most cases of unimplemented functionality itiseasy to see
how thefeaturescould beimplemented and easy to predict the performance of theparallel version. However, itis
not yet clear how to emulatethe PAT command which findsthelongest repeated section of text. Inaddition, while
itiseasy tofind waysto emulatethe PAT default mode of presenting search resultsin lexicographic order, finding
which is optimum in some senseis an interesting direction for further work.

5. How PADDY isImplemented on the Fujitsu AP1000

TheFujitsu AP1000 (also known asthe CAP, short for Cellular Array Processor) consistsof an array of processor
cells, each with a SPARC integer unit, Weitek floating point unit and 16 megabytes of RAM. The cellsare con-
nectedina2—dimensional torusmesh and al soto aglobal broadcast network and asynchronization network. Both
the torus network and the broadcast net have high bandwidths.

At present, the CAP cells have no i/o capability except for the networks described. Thereisno shared memory.
Communication with the external world isviaaVME interface in a Sun 4/390 front—end.

Thedictionary searching problemisinherently parallel. Thetext to be searched isbroken up into clearly delin-
eated entriesand thereisno requirement for matchesto cross boundariesbetween entries. Consequently, the pro-
cessorsof the CAP can search their own chunk of thetext basewithout needing to communicatewiththeir fellows.

ThePADDY system consists of ahost program running on thefront end and acell program which isbroadcast to
all the cellsby the host program. Both programsarewrittenin C with callsto the CAP communication libraries.
The host program accepts user commands and, having interpreted them, passes instruction messages over the
broadcast network to the cells and receives messagesin reply.

Loading The Text Base

If the text base (dictionary or dictionaries) comes from disk, it is memory mapped into the host program virtual
addressspace, and arbitrarily dividedinto equal sized chunkswhich areeach sentto adifferent cell usingalibrary
cal. If thetext filecomesfrom atape device (Exabyte), it must beread in using read() calls. Thechunk sizewhen
thefull OED (550 megabytes) isprocessed on 64 cellsisabout 8.6 megabytes. Tolimit buffer spacerequirements,
large chunks are sent in multiple messages of 0.5 megabytes or less.

Once each cell hasits chunk of dictionary data, the host broadcasts a message to all cells, asking them to check
whether they have an incomplete entry at the beginning of their chunk and, if so, to forward it to the cell on their
left. It isobviously faster to do thisthan to have the host scan the dictionary for entry boundaries asitisread in.

An unexpected problem arose when testing PADDY on a small (5 megabyte) section of the dictionary. Some
entriesinthe OED areover 250 kilobytes (40,000 words!) long, larger than 5/64 megabytes, causing somecellsto
end up with no datal

If aproductionversionof PADDY weretowork onrelatively static data, considerablel oading speed—upwould be
achievedif each cell’sinitial datawerestoredin aseparate compressedfileondisk. Thedecompressionwithinthe
cells should take only afraction of the time currently taken to transfer the datafrom disk to front—end and from
front—end to the cells.

Sorage Allocation Wthin Cells

Each cell has 16 megabytes of memory, of which less than 2 megabytes are needed for the CAP cell kernel, the
PADDY cell program, buffersand stack space. Inthe currentimplementation of PADDY, 14 megabytesareallo-
cated in each cell for one or more dictionaries and for saving the successful matches (as pointers).

Searching For Literal Srings

Thesearchfor literal stringshasbeenimplementedintwo different ways. Thefirst usesthemost straight—forward
brute—force algorithm possible. Using this method, the searcher can choose whether or not searches should be
bound by the PAT constraint that matchesstart at thebeginningsof words. Relaxingtheconstraint allowssearches
for suffixes, an extension which would have been appreciated by the Dictionary Centrewhen they werereplacing
—ize endings with —i se throughout the Concise Oxford Dictionary.

Thesecond search method relieson the exi stence of aword—start index whose creation and useisdescribed imme-
diately below. Itisfar faster but lessflexible.

Creation and Use of A Word Sart Index

If very fast searchesfor literal stringsarerequired, the searcher can request that PADDY build an index of word
startsfor the dictionary in question. Each cell scansitstext chunk and creates atable of pointersto all the word
starts. Thesepointersarethen sorted (using quicksort) sothat they referencethewordsinlexicographicorder. All
occurrences of aparticular search string which begin aword can thus be found by abinary search of the ordered
pointer table followed by alinear scan.

Thediscussion of PAT arraysin Gonnet et a. [2] seemsto imply that the sameindex building and accesstechin-
gues are now used in the PAT program. A question of interest is how effectively the AP1000 (and machines of
similar architecture) can be used to speed up the creation of indicesto be used later by searching softwarerunning
on a sequential machine.

Largeamountsof memory are needed for the pointer tables. The Oxford English Dictionary (550 megabytestotal
size) contains 66 million words, not including SGML tags, and generates 270 megabytes of pointer tables.

Searching For a Lexicographic Range

Therangeisconvertedtoaset representation. Each character positionintherangecan berepresented asal6-byte
set, assuming a 7-bit character representation. Norn—matching characters are eliminated quickly using a4—-byte
(int) set which isthelogical or of the four 4—-byte components of the full set.

Searching For a Numeric Range

The lexicographic range machinery is used to build atemporary set of al stringsin the dictionary of the desired
lengthwhich contain only digits. Thestringsarethen converted tointegersand numerically compared to the spe-
cified lower and upper limits.

Defining Components and Searching Within Them

PAT allows two types of components. those defined at index building time and those defined by the searcher.
PADDY implementsonly the latter. When acomponent isdefined, PADDY usesits standard matching code to
create two corresponding arrays, the first containing pointers to the start—of—component strings and the second
poi ntersto the matching end—of—component strings. Searchesfor stringswithin componentsareimplemented as
aseries of callsto the matching routine, using the relevant pointer pairs to bound the search.

More General Pattern Matching

Itisintended that thefreely available GNU regular expression codewill beincorporatedinto the PADDY frame-
work, but, at the time of writing, this had not yet been done.

Sorting of Matches

In the absence of aword—start index, the matches are found by the cellsin the order in which they appear in the
dictionary. Using aword-start index meansthat matches are a phabetised withinacell but in essentially random
order asfar asthewholedictionary isconcerned. The*“best” way to sort aset of matchesdistributed over thearray
of cellsisnot yet known. Dynamic method selectionislikely to yield best results because some potentially fast
methods may run out of memory in certain cases.

6. Performance Measurements

Thetimingsreportedfor PADDY arethose seen by the AP1000front—end. Thetimer onthefront-endisstartedas
soon as the user command is recognized and stopped when the front—end is notified of completion. Timesre-
ported are generally slower than the best possible due to other users' activity on the timeshared front—end.

Time To Load The AP1000

Theelapsedtimetakentoread thedictionary fileinto the cellsof the AP100 s, of course, heavily dependent upon
theload onthefront—end file system. Under time—sharing thetimetakentoload thefull OED istypically about 15
minutes or about 0.61 megabytes/sec. It seems more relevant to speak of the fastest observed time rather than
averagetimes. The fastest observed loading rateis about 1.13 megabyte/sec.

Brute—Force Searching

Search Command M eaning No. of Matches| Elapsed Time (sec.)

“t” (PAT mode) words starting with the letter t 5,778,452 11.08

“t all occurences of the letter t 25,273,155 11.18

“supercomputer ” 1 15.53

“goaad’.." gozzz" al words starting with go and then any other 44,055 20.54
three letters.

1788..1901 all sequences of digits whose first four digits 1,040,018 18.80
make a number in the specified range.

Q=docs “<g>" .. “</g>" | defining aquotation component Q delineated by 2,435,559 24.73
the specified start and end strings.

dog within docs Q al occurrences of theword dog withinthe quota- 6,616 8.46
tion components defined above.

docs Q including cat al quotations which include the word cat 13,104 8.38

Figure 1: Search times on the Oxford English Dictionary (550 megabytes) using brute-force methods on a 64 cell
Fujitsu AP1000. Observed times show little variability. Figuresgiven are the mean of five observations.

Relationship of Speed to Number of Cells

Number of Cells 8 16 32 64
Shortest time to load text base (sec.) 64.9 62.9 65.5 62.3
Timeto find all occurrences of “com- 7.72 3.94 2.03 1.07
puter” (123 of them)

Figure2: Variation of search and load times for a 50 megabyte dictionary subset with number of processor cells.
Search times are the mean of five observations.

Thedatapresentedin Figure 2 showsthat searcheson 64 cellsare 7.21 timesasfast asthoseon 8 cells. Itisunclear
at present why the relationship between speed and number of cell is not even closer to linear.

Searching Using Word-start Index

Timetobuildindex | Timeto find all occurrences of “antimony” Timeto find all occurrences of “the”
(327 matches) (2,578,161 matches)

- 10.95 11.22

176.28 0.01 0.33

Figure3: Timetofindall occurrencesof aliteral stringina550 megabytedictionary with and without use of word—start
index. Times are the mean of five observations.

The speedup factor gained by use of theindex ranges from about 30 to over 1,000. As can be seen, the speed of
indexed matching depends heavily on the number of matches found.

Comparison with PAT

Not having accessto the source code, PAT searches must be timed by hand. Using a45 megabyte section (parts
4.1-4.9) of the OED on an 8 megabyte Sun SLC, initial PAT search times were slower than 64—cell brute—force
PADDY (eg."goanna” —2.9 sec, "junk” — 1.6 sec) but after awhilethey speeded up to the point of being virtually
impossible to time manually. Thismay be due to sections of code or index having been paged in. Searchesfor

rangeswerealso very quick: (”70000"..”9999” —2.1 sec., "goanna’..” goanna’ —too quick to time). On the other
hand, PAT seemsto slow down when searching within components whereas PADDY speeds up.

It isunknown how PAT search times are affected by the size of the dictionary nor by the size of memory on the
computer. At the time of writing, the ANDC did not have an index file for the full OED.

7. Discussion

PADDY brute—force searches of thewhole OED (550 megabytes) take of theorder of 10-12 secondson a64 cell
CAP. Thiswouldamost certainly bes ower than anindex—based serial system, but | haveno comparativefigures.
In any case, the PADDY search timesfall within aloose definition of “interactive” and can be improved if the
amount of text per cell isreduced. (Just add more hardware!)

The performance of the basic brute—force string—matching code asimplemented so far is certainly sub—optimal.
No effort has been made to hand optimize the code and cleverer algorithms have not yet been employed. The
GNU regular expression code which it is planned to incorporate into PADDY uses the Boyer—Moore-Gosper
speed—up when searching for literal strings.

Thebrute—force parallel version also offers great flexibility in search. Extension of Paddy to handle regular ex-
pressions should be straight—forward. Gonnet et al. [2] describe how regular expression matching can be sup-
ported over PAT trees but no such facility isincorporated in the production version of the PAT program.

Itislikely that loading theraw text in the parallel implementation would be three orders of magnitude faster than
building anindex onaserial machine. Fromthis, itisclear that the parallel approachisgreatly superior if thetext
base is subject to frequent update.

PADDY ’'ssearching performance when word—start indexes are used isvery impressive and certainly fast enough
to support queries from alarge number of concurrent users. It may be that the bottleneck in such atime—shared
query service would be the ability to passthe results of searches acrossthei/o link between the Fujitsu AP1000
and thefront—end Sun. Performancewould beimprovedinthisregardif resultswere sent aspointersinto thetext
base on disk rather than as 80 character context strings.

Thetask of building npartial indexesisconsiderably easier than building asinglecompleteindex. Whenthereare
n separate processors and both the index and the raw data can be kept in primary memory, amassive speed up is
achieved. Itislikely that the index—build timefor atext base of 8 megabytes per cell could be brought down to
about one minute, preserving the speed of index—based searching while at the sametimeallowing thetext baseto
be frequently updated. Further work needsto be done to extend the types of searcheswhich are index—assi sted.

The work reported in this paper suggests that the Fujitsu AP1000 could be used for brute-force, inr—-memory
searches of textbases up to about 9 megabytestimesthe number of processor cells. The maximum configuration

AP1000 comprises 1,024 cells, implying that 9 gigabytesisthe practical [imit ontext basesize. Such adatabase
could be loaded in about 2.5 hoursin raw form or in about 50 minutes using data compression techniques.

Anobviousextensiontothe AP1000 architecturewoul d betheaddition of local disksonsomeor all of thecells. In
theunlikely caseof adisk per cell, thetimetoload a9 gigabytetext baseintoal,024 cell CAPcould beaslittleas
10 seconds! Such disks could also be used to increase the limit on size of text bases. If indices were kept in
memory and the raw text on disk, the limit could be increased to 20 gigabytes.

Thevision of apractical system which, after loading 20 gigabytes of text and indexing it in atotal of about three
minutes, allowssearchestofind al occurrencesof awordinlessthan atenth of asecondisstill capableof impress-
ing some of us even in this technol ogy—blase world!

Acknowledgements. |amindebtedtoDr W.SRamsonand MsH.A. Michell of the Australian National Dic-
tionary Centrefor welcoming meinto the centreand teaching meall | know about production of dictionaries. The
work reported has al so benefited considerably from discussions with other members of the ANU Computer Sci-
ence Department, particularly Prof. R.B. Stanton, Dr. C.W. Johnson, Dr. B.D. McKay and Mr. R. Cohen.

REFERENCES

1 Fawcett, H. PAT 3.3 User’s Guide, University of Waterloo Centre for the New Oxford English Dictio-
nary, Waterloo, Ontario, Feb 1991

2. Gonnet, G.H., Baeza—Yates, R.A. and Snider, T. Lexicographical indices for text: Inverted filesvs. PAT
trees. Report OED-91-01, University of Waterloo Centre for the New OED and Text Research, Water-
loo, Ontario, Feb 1991

3. Sdton, G. and Buckley, C. Parallel text search methods. Commun. ACM 31, 2 (Feb. 1988), 202-215.

4, Stanfill, C. Parallel computing for information retrieval: Recent developments. Technical Report
DR88-1. Thinking Machines Corporation, Cambridge, Mass., 1988

5. Stanfill, C. and Kahle, B. Parallel free—text search on the Connection Machine system. Commun. ACM
29, 12 (Dec. 1986), 1229-12309.

6. Stanfill, C. and Thau, R. Information retrieval on the Connection Machine: 1 to 8192 gigabytes. Tech-
nical Report DR90-3. Thinking Machines Corporation, Cambridge, Mass., 1990

7. Stanfill, C., Thau, R. and Waltz, D. A parallel indexed algorithm for information retrieval. Technical
Report DR90-2. Thinking Machines Corporation, Cambridge, Mass., 1990

8. Stone, H.S. Parallel querying of large databases: A case study. Computer 20, 10 (Oct. 1987), 11-21

9. Waltz, D., Stanfill, C., Smith, S. and Thau, R. A parallel indexed algorithm for information retrieval.
Technical Report DR87-3. Thinking Machines Corporation, Cambridge, Mass., 1987

