
1

Web-Scale Semantic Ranking

Jing Bai

Microsoft Corp
1020 Enterprise Way

Sunnyvale, CA 94089 USA

jbai@microsoft.com

Jan Pedersen

Microsoft Corp
1020 Enterprise Way

Sunnyvale, CA 94089 USA

jpederse@microsoft.com

Mao Yang

Microsoft Research
No.5 Dan Ling Street
Beijing, 100080 China

maoyang@microsoft.com

ABSTRACT

Semantic ranking models go beyond keyword matching to score

documents based on closeness in meaning to the query. The use of

semantic ranking in Web search has been limited due to the high

cost of these models. To address this issue, we have designed and

implemented a new Web-scale ranking system that enables us to

integrate semantic ranking techniques into a commercial search

engine. We have explored several types of models and will describe

our implementation of translation models (TM) in this paper. The

experiments demonstrate that these models significantly improve

relevance over our existing baseline system. Our new ranking

system is deployed online and is currently serving many millions

of users.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information Search

and Retrieval – Retrieval Models

General Terms

Algorithms, Performance, Experimentation

Keywords

Web search, Semantic ranking, Forward index, Translation model

1. INTRODUCTION

This paper describes a new Web-scale architecture for the

implementation of semantic ranking models. In contrast to

traditional keyword matching and ranking systems that depend

heavily on an inverted index for performance, our system uses

recent innovations in hardware, specifically flash memory drives,

to implement a flexible context-aware ranking framework on top

of a per-document forward index.

Many semantic ranking models have been explored in Information

Retrieval (IR) [1][3][4][8][9][12]. These models improve relevance

by expending ranking beyond terms in the query. For example,

translation models (TM) [3] score text segments based on the

probability that the query would have generated the text segment.

They have proven to be effective means to improve search quality.

However, traditional implementations of semantic ranking

techniques depend heavily on extensive query (or document)

expansion [2][7], since the underlying inverted index only supports

lookup of individual query terms. This inherent constraint has

limited the adoption of semantic ranking models at Web-scale.

In this paper, we describe the design and implementation of a new

ranking system that enables the incorporation of full semantic

models in a Web-scale search engine. We employ a multi-round

ranking architecture where the first matching round uses a

traditional inverted index to compute a large number of candidates

efficiently using the given query terms, while the second precision-

ranking round uses a flexible per-document forward index to

consider additional context-dependent expansion terms.

Performance in the ranking phase is achieved through the use of

high performance flash memory drives to store the forward index

and an efficient encoding for the per-document index. This new

architecture has numerous advantages including the separation of

matching and ranking and the ability to leverage large knowledge

models in the ranking phase.

We have explored several types of semantic ranking models:

translation models, syntactic pattern matching models and topical

matching models. These models are implemented by designing a

set of semantic features for input into a machine learned ranking

model [6]. Our experiments show that all these models significantly

improve relevance over our existing baseline system. We will use

translation models as an example in this paper.

In summary, the main contributions of this paper include:

 The design and implementation of a new Web-scale ranking

system that enables full semantic ranking models;

 The exploration of several semantic models including

translation models and demonstration of significant relevance

improvement over our baseline production system.

In the next section, we will describe related work on Web search

engine. Then our ranking system design, semantic ranking models

and experimental results will be presented. We finish with

conclusions and plans for future work.

2. RELATED WORK

Modern search engines use an inverted index to efficiently

implement matching and ranking. Ranking models leverage the

information stored in inverted index to generate traditional

matching and proximity features. A forward index (i.e. a mapping

from document to content terms) is only used to generate query-

dependent snippets for the top ranking documents.

Massive query expansion, typically through pseudo relevance

feedback, is an effective semantic ranking method [1][2]. Several

techniques have been proposed to select and re-weight the

expansion terms and factor those terms into a document scoring

function [1]. However, massive query expansion is difficult to

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

SIGIR’14, July 6–11, 2014, Gold Coast, Australia.

Copyright 2014 ACM 1-58113-000-0/00/0000 …$15.00.

2

implement in Web-scale search engines since accessing many

expanded terms requires extra runtime cost.

Language models have been successfully applied to IR [10][12].

The basic idea is to rank documents based on the probability the

document is relevant given the query. Bayes rule is applied to

compute the probability of relevance in terms of the probability of

generating the query given the document (i.e. 𝑃(𝐷|𝑄) ∝
𝑃(𝑄|𝐷)𝑃(𝐷)) [10]. Different methods are used to compute

𝑃(𝑄|𝐷). Traditional language models use local and global corpus

statistics, analogous to tf and idf [12]. Translation models use fine-

grained text alignments to compute these probabilities [3]. For

these methods, high quality training data in the form of editorially

judged query-document pairs is critical for success. In practice,

large-scale training sets of this kind are hard to obtain. Therefore,

[3] resorts to the generation of synthetic query-document pairs, and

[8] uses implicit relevance judgments from click-through data.

Semantic ranking techniques are not well supported by an inverted

index. For example, for a given query, language models may have

probability mass on many contextual related terms. If this is

implemented through query expansion, pragmatic considerations

will likely truncate the model to include only the closest related

terms. To address this issue, we have designed and implemented a

new Web-scale ranking framework that enables us to integrate full

semantic ranking models into a commercial search engine.

3. RANKING SYSTEM DESIGN

Our new ranking system design addresses three main challenges for

embedding semantic models into search engines: (1) sufficient

memory and computation power for ranking; (2) the efficient

access to complete Web documents and knowledge data; and (3)

agility in developing new features and models.

3.1 System Overview

A Web search engine finds relevant results for a query from billions

of documents. After crawling pages from the Web, an offline

document repository stores the documents to be made available

online in an inverted and a forward index for future searches. An

inverted index maps a term to its occurrences in the indexed corpus,

while a forward index maps a document to its contents.

A search engine system consists of a matching phase and a ranking

phase. The matching phase selects and pre-ranks many thousands

of documents according to query terms while the ranking phase

ranks documents selected by the matching phase using a

comprehensive ranking model. To reduce query processing latency,

traditional search engines perform matching and ranking on an

inverted index that is mostly maintained in memory. In contrast, the

forward index, typically stored on disk, is only used to generate

query-dependent snippets for a few top ranking documents.

Figure 1 illustrates the overall architecture of our semantic ranking

system. Unlike conventional search systems, our new ranking

service ② works as an independent service that no longer shares

computation resources or the inverted index with the matching

service ①. As a result, most of the memory and computation power

can be used to enable the implementation of more sophisticated

semantic ranking models.

The ranking service works on a per-document index (PDI), which

is a type of forward index that can efficiently encode rich semantic

information for real-time access during the ranking phase. All

information about the document is stored and accessed per

document in the PDI whereas an inverted index mostly provides

information about the query terms in relation to the document and

so ranking models cannot access contextual information. The PDI

is implemented as a large-scale distributed table service optimized

for fast flash memory storage.

PDI on distributed table service

Matching service Ranking service

Query

Inverted index

Query understanding

Aggregation layer

① ②

Results

Figure 1. Semantic ranking system architecture

3.2 Per-Document Index

The ranking phase needs to process about 100x more documents

from the forward index than conventional search systems which

only uses the forward index for snippet generation on top 20

documents. By using flash memory drives which have much higher

random access throughput compared to hard disks, the ranking

services can process the full contents of thousands of documents.

Figure 2 illustrates our new per-document index design which

further addresses this performance challenge through: (1) a well-

designed document model that allows ranking models to efficiently

access different document sections; (2) a brand-new forward

coding algorithm with improved decoding speed; and (3) an

optimized large-scale table service to further reduce the cost and

latency of index access.

Table Service

Object-to-table Mapping

Forward Coding

Streams

Document Model

AnnotationsProperties

Figure 2. Per-document index

At the core of our ranking platform is the document model that

provides document information for ranking models. Because not all

ranking models need to access all contents of a document at one

time, document content is grouped into different sections that can

be accessed independently for efficiency. A stream section is used

to store terms in the document that appear in Title, URL and Body

blocks. As stream sections occupy most of the storage, an efficient

coding algorithm is used to reduce their size. A property section

stores document-level metadata, such as the language, location, and

creation time of the document. Besides stream and property section

types, an annotation section is used to enhance basic stream

sections with additional information. For example, a Body stream

only stores a list of basic terms in the body block while other

information in the body block, such as punctuation, upper/lower

case, etc., is stored in an annotation section.

For the per-document index, we designed a new forward coding

algorithm that balances compression ratio with decoding speed.

The new coding algorithm includes three key features: (1)

3

dictionary-based pre-processing to reduce the cost of encoding a

word; (2) cache-based integer coding to further reduce the cost of

encoding a word ID; and (3) a dynamic approach to reconstruct a

word and inverted word list to reduce the chance of decoding all

vocabulary for a whole document.

An object-to-table module maps document sections to columns of

an underlying table service. Although the per-document index is

logically independent for each document, physically it can be

aggregated into one or multiple files on flash memory drives to

reduce online serving latency. Sections of a document are grouped

into different column groups; e.g. the sections used by Web traffic

belongs to one group, while the sections for experimental data

belong to another group.

3.3 Semantic Ranking Framework

To reduce the effort of implementing different ranking models for

an online system, we design a new ranking framework to facilitate

prototyping and development of semantic ranking models. Figure

3 shows our semantic ranking framework. During the ranking

phase, each ranking model can access the query, the document, and

the knowledge store to generate ranking features for the final

learning-to-rank models.

Final ranker

Knowledge Store
Translation models

Syntactic models

Topical models

Document Model
terms

phrases

entities

Query Model
terms

phrases

entities

Semantic features

Feature Primitives

Figure 3. Semantic ranking framework

The document model provides a set of operators to access a

document, allowing access to every term and to extracted context

windows from a stream that contain all or some of the query terms.

The query model also allows the attachment of semantic

information (e.g. entities or phrases) to the original query. Our goal

is to construct a better query and document representation in line

with the current trend in language modeling [12]. The knowledge

store provides data structures for accessing model data in an

efficient way, such as a compact in-memory mapping table to store

information for translation models.

Rather than developing features from scratch, a set of feature

primitives allows developers to directly generate features. After

semantic features are generated, the ranking system feeds the new

features with the traditional keyword-based and other query-

independent features into a machine learned ranking model [6] to

get the final score for a query-document pair. Section 4 further

describes how these new features help improve relevance.

4. SEMANTIC RANKING MODELS

Considering the fact that commercial search engines already

incorporate thousands of ranking features and numerous human

tweaks, it is challenging to add new features that meaningfully

move relevance metrics. Our goal is to design techniques which

take full advantage of different types of contextual information at

runtime. The main advantages of the PDI stem from the fact that all

contextual information about the document is accessed at the time

a query is received. During ranking process, the semantic units

associated with the query are analyzed and compared to the

semantic units within documents in the PDI. Documents that share

similar semantics with the query are ranked higher. The use of such

information enables the creation of new semantic ranking features

which result in relevance improvement. This enables us to move

from keyword matching to semantic ranking.

We have explored several types of semantic ranking features but

will only describe translation models in this paper. Statistical

machine translation (SMT) is a machine translation paradigm [3]

where translations are generated on the basis of statistical models

whose parameters are derived from the analysis of parallel texts

(i.e. texts with their translations).

The formula below describes the SMT model. Let 𝑄 = 𝑞1…𝑞𝐽 be

a query and 𝐷 = 𝑤1…𝑤𝐼 be the document, the unigram-based

translation model [3] assumes that both Q and D are bag-of-words,

and the translation probability of a query given a document is

calculated as:

𝑃(𝑄|𝐷) = ∏ ∑ 𝑃(𝑞|𝑤)𝑃(𝑤|𝐷)𝑤∈𝐷𝑞∈𝑄 (1)

Here 𝑃(𝑤|𝐷) is the unigram probability of word w in D, and

𝑃(𝑞|𝑤) is the probability of translation w into a query term q.

In our work, the goal is to leverage SMT technologies to improve

search relevance, namely by solving the mismatch problem

between query and document. The basic idea of translation model

is to view queries and documents as being in two different

languages, and to bridge the gap between them via translation. For

example, if a query contains the term “software”, a document

containing the term “PowerPoint” is related. The relationship

between terms (i.e. 𝑃(𝑞|𝑤)) is estimated via a statistical translation

model. The model can be trained on different types of parallel texts.

In this work, we assume that queries are parallel to their frequently

clicked document titles, and two click texts are parallel if both are

associated with the same URL (i.e. click-through data from two

different user groups).

To learn the translation probabilities, we follow the standard

procedure of training statistical word alignment models proposed

in [5]. We optimize the model parameters θ by maximizing the

probability of generating queries from titles (or generating one

click text from others) over the training data. The probability

𝑃(𝑄|𝐷, 𝜃) takes the form of IBM model 1 in [5].

At ranking time, for a given query, we calculate the translation

probabilities from the query to a document using a translation

model, and then generate ranking features based on these

probabilities. For example, in the click-based TM, for a given

query-document pair, we go through top click texts of this

document and generate new ranking features such as Max, Min,

Average, weighted Average, weighted Sum of their translation

probabilities to the query.

The ranking framework is also extended to other TM applications

in our work. These include: (1) bigram TM, where each source and

target contains up to two adjacent terms, (e.g. “ny” => “new york”);

(2) phrase-based TM, which extracts the key n-grams in the query

and document using a learning-to-rank method, and then append

them to the initial query and document; and (3) entity-based TM,

which aims to incorporate more precise concepts that are mined

from the internal entity relationship graphs.

4

5. EXPERIMENTAL RESULTS

In our experiments, we examine the following aspects: (1) What is

the relevance improvement resulting from these new semantic

ranking features? (2) Is it beneficial to generalize a semantic model

to different data sources and to different semantic levels?

In this work, we use normalized discounted cumulative gain

(NDCG@1) as our primary ranking metric [11]. The experiments

train and validate the models using a sampling of editorially judged

query-document pairs. In order to test the approach on realistic

data, we use data from a commercial search engine in our

experiments. We have collected more than 10M editorially judged

query-document pairs during a period of two years. We randomly

split the data into training set and testing set. Head is the test set

which contains a natural distribution of queries from our daily

traffic, and Tail contains a sample of rare queries (e.g. those appear

once in the query log).

Each query-document pair is represented by a feature vector. The

baseline ranker uses three types of features: (1) query-based

features; (2) document-based features; and (3) query-document-

based features. Trained on several thousands of features, the

baseline ranker was used in our commercial search engine until the

semantic ranking system described in this paper went online.

5.1 Applying TM on Different Data Sources

A Web document consists of several fields of information. In order

to analyze the contributions from each data source, we conducted

several experiments to apply translation model on different

streams: Title, URL and Click text.

The results are summarized in Table 1, which are the relative

NDCG improvement with respect to our baseline production

system due to the application of TM on different text streams. The

model we used in this series of tests is a compressed 1GB unigram

model. A t-test is also performed for statistical significance at the

level of 95%.

Table 1. Relative NDCG gain using different streams

(* means significant changes in t-test with respect to the baseline)

We can see from this table that Click produces the best results

(+1.029 on average) among all the single streams, and the

combination of all data Title+URL+Click produces the best results

(1.247 on average) among all combinations.

The model used in these experiments is trained on over 1 billion

example pairs, which combine data from query-title, query-URL

pairs and pairs of queries leading to the same click. Our previous

experiments have shown that the universal model (i.e. a model

trained using combined data) produces the best results compared to

models that are trained separately on different data sources.

5.2 TM to Different Semantic Levels

We generalized the unigram TM to other higher-order models as

well. Instead of training unigram model on single word, the bigram

TM is trained from two adjacent terms, the phrase-based TM is

trained from n-grams (or concepts) extracted by a machine learning

approach, and the entity-based TM is trained from highlighted

entities of the documents. Table 2 shows relative NDCG results of

the bigram, the entity-based, and the phrase-based TM respectively.

Table 2. Relative NDCG gain using different models

(** means significant changes in t-test with respect to the best unigram TM)

As we can see in Table 2, the bigram TM produces some

improvements over unigram model, while the phrase-based TM

produces stronger improvement. The possible reason is that phrases

extracted by a reasonable ML method can represent more precise

concepts compared to the adjacent terms in bigram model. Among

the three models, the entity-based TM performs the best, since the

precision and coverage of entity model is higher than other models.

6. CONCLUSION

This paper demonstrates for the first time how a full translation

model, together with other semantic models, can be employed to

significantly improve relevance over a traditional keyword search.

To implement semantic ranking techniques, we have designed a

new semantic ranking framework to enable the application of full

context-aware models. To do this, we implemented a per-document

index structure, which explores flash memory drives for latency

reduction. The experimental results show significant relevance

improvement over our existing system. Many other semantic

models can also utilize our semantic ranking framework.

REFERENCES

[1] Bai, J., Nie, J-Y., Bouchard, H., and Cao, G. 2007. Using Query

Contexts in Information Retrieval. In SIGIR’07, pp.15-22.

[2] Bai, J., Song, D., Bruze, P., Nie, J-Y., and Cao, G. 2005. Query
expansion using term relationships in language models for

information retrieval. In CIKM’05, pp. 688-695.

[3] Berger, A. and Lafferty, J. 1999. Information retrieval as statistical

translation. In SIGIR’99, pp. 222-229.

[4] Blei, D. M., Ng, A. Y., and Jordan, M. J. 2003. Latent dirichlet

allocation. In JMLR, V3, pp. 993-1022.

[5] Brown, P. F., Della Pietra, S. A., Della Pietra, V. J., and Mercer, R. L.
1993. The mathematics of statistical machine translation: parameter

estimation. In Computational Linguistics, V19 (2), pp. 263-311.

[6] Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton,

N., and Hullender, G. 2005. Learning to rank using gradient descent.
In ICML’05, pp. 89-96.

[7] Cao, G., Nie, J-Y., and Bai, J. 2005. Integrating word relationships
into language models. In SIGIR’05, pp. 298-305.

[8] Gao, J., He, X., and Nie, J-Y. 2010. Clickthrough-based translation

models for web search: from word models to phrase models. In
CIKM’10, pp. 1139-1148.

[9] Hofmann, T. 1999. Probabilistic latent semantic indexing. In
SIGIR’99, pp. 50-57.

[10] Lafferty, J. and Zhai, C. 2001. Document language models, query
models, and risk minimization for information retrieval. In SIGIR’01,

pp. 111-119.

[11] Jarvelin, K. and Kekalainen, J. 2002. Cumulated gain-based
evaluation of IR techniques. In ACM Transactions on Information

Systems, V20, pp. 422-446.

[12] Ponte, J. and Croft, W. B. 1998. A language modeling approach to
information retrieval. In SIGIR’98, pp. 275-281.

Stream Head Tail Avg

Title +0.443 +0.865* +0.654

URL +0.377 +0.900* +0.638

Click +0.610* +1.448* +1.029

Title + URL + Click +0.812* +1.683* +1.247

Model Head Tail Avg

bigram +0.067 +0.525** +0.296

phrase-based +0.233 +0.600** +0.417

entity-based +0.500** +0.800** +0.650

