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ABSTRACT 

Semantic ranking models go beyond keyword matching to score 

documents based on closeness in meaning to the query. The use of 

semantic ranking in Web search has been limited due to the high 

cost of these models. To address this issue, we have designed and 

implemented a new Web-scale ranking system that enables us to 

integrate semantic ranking techniques into a commercial search 

engine. We have explored several types of models and will describe 

our implementation of translation models (TM) in this paper. The 

experiments demonstrate that these models significantly improve 

relevance over our existing baseline system. Our new ranking 

system is deployed online and is currently serving many millions 

of users. 
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H.3.3 [Information Storage and Retrieval]: Information Search 

and Retrieval – Retrieval Models 
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1. INTRODUCTION 

This paper describes a new Web-scale architecture for the 

implementation of semantic ranking models. In contrast to 

traditional keyword matching and ranking systems that depend 

heavily on an inverted index for performance, our system uses 

recent innovations in hardware, specifically flash memory drives, 

to implement a flexible context-aware ranking framework on top 

of a per-document forward index. 

Many semantic ranking models have been explored in Information 

Retrieval (IR) [1][3][4][8][9][12]. These models improve relevance 

by expending ranking beyond terms in the query. For example, 

translation models (TM) [3] score text segments based on the 

probability that the query would have generated the text segment. 

They have proven to be effective means to improve search quality.  

However, traditional implementations of semantic ranking 

techniques depend heavily on extensive query (or document) 

expansion [2][7], since the underlying inverted index only supports 

lookup of individual query terms. This inherent constraint has 

limited the adoption of semantic ranking models at Web-scale. 

In this paper, we describe the design and implementation of a new 

ranking system that enables the incorporation of full semantic 

models in a Web-scale search engine. We employ a multi-round 

ranking architecture where the first matching round uses a 

traditional inverted index to compute a large number of candidates 

efficiently using the given query terms, while the second precision-

ranking round uses a flexible per-document forward index to 

consider additional context-dependent expansion terms. 

Performance in the ranking phase is achieved through the use of 

high performance flash memory drives to store the forward index 

and an efficient encoding for the per-document index. This new 

architecture has numerous advantages including the separation of 

matching and ranking and the ability to leverage large knowledge 

models in the ranking phase. 

We have explored several types of semantic ranking models: 

translation models, syntactic pattern matching models and topical 

matching models. These models are implemented by designing a 

set of semantic features for input into a machine learned ranking 

model [6]. Our experiments show that all these models significantly 

improve relevance over our existing baseline system. We will use 

translation models as an example in this paper. 

In summary, the main contributions of this paper include: 

 The design and implementation of a new Web-scale ranking 

system that enables full semantic ranking models; 

 The exploration of several semantic models including 

translation models and demonstration of significant relevance 

improvement over our baseline production system. 

In the next section, we will describe related work on Web search 

engine. Then our ranking system design, semantic ranking models 

and experimental results will be presented. We finish with 

conclusions and plans for future work.  

2. RELATED WORK 

Modern search engines use an inverted index to efficiently 

implement matching and ranking. Ranking models leverage the 

information stored in inverted index to generate traditional 

matching and proximity features. A forward index (i.e. a mapping 

from document to content terms) is only used to generate query-

dependent snippets for the top ranking documents. 

Massive query expansion, typically through pseudo relevance 

feedback, is an effective semantic ranking method [1][2]. Several 

techniques have been proposed to select and re-weight the 

expansion terms and factor those terms into a document scoring 

function [1]. However, massive query expansion is difficult to 
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implement in Web-scale search engines since accessing many 

expanded terms requires extra runtime cost. 

Language models have been successfully applied to IR [10][12]. 

The basic idea is to rank documents based on the probability the 

document is relevant given the query. Bayes rule is applied to 

compute the probability of relevance in terms of the probability of 

generating the query given the document (i.e. 𝑃(𝐷|𝑄) ∝
𝑃(𝑄|𝐷)𝑃(𝐷) ) [10]. Different methods are used to compute 

𝑃(𝑄|𝐷). Traditional language models use local and global corpus 

statistics, analogous to tf and idf [12]. Translation models use fine-

grained text alignments to compute these probabilities [3]. For 

these methods, high quality training data in the form of editorially 

judged query-document pairs is critical for success. In practice, 

large-scale training sets of this kind are hard to obtain. Therefore, 

[3] resorts to the generation of synthetic query-document pairs, and 

[8] uses implicit relevance judgments from click-through data. 

Semantic ranking techniques are not well supported by an inverted 

index. For example, for a given query, language models may have 

probability mass on many contextual related terms. If this is 

implemented through query expansion, pragmatic considerations 

will likely truncate the model to include only the closest related 

terms. To address this issue, we have designed and implemented a 

new Web-scale ranking framework that enables us to integrate full 

semantic ranking models into a commercial search engine. 

3. RANKING SYSTEM DESIGN 

Our new ranking system design addresses three main challenges for 

embedding semantic models into search engines: (1) sufficient 

memory and computation power for ranking; (2) the efficient 

access to complete Web documents and knowledge data; and (3) 

agility in developing new features and models. 

3.1 System Overview 

A Web search engine finds relevant results for a query from billions 

of documents. After crawling pages from the Web, an offline 

document repository stores the documents to be made available 

online in an inverted and a forward index for future searches. An 

inverted index maps a term to its occurrences in the indexed corpus, 

while a forward index maps a document to its contents. 

A search engine system consists of a matching phase and a ranking 

phase. The matching phase selects and pre-ranks many thousands 

of documents according to query terms while the ranking phase 

ranks documents selected by the matching phase using a 

comprehensive ranking model. To reduce query processing latency, 

traditional search engines perform matching and ranking on an 

inverted index that is mostly maintained in memory. In contrast, the 

forward index, typically stored on disk, is only used to generate 

query-dependent snippets for a few top ranking documents. 

Figure 1 illustrates the overall architecture of our semantic ranking 

system. Unlike conventional search systems, our new ranking 

service ② works as an independent service that no longer shares 

computation resources or the inverted index with the matching 

service ①. As a result, most of the memory and computation power 

can be used to enable the implementation of more sophisticated 

semantic ranking models.  

The ranking service works on a per-document index (PDI), which 

is a type of forward index that can efficiently encode rich semantic 

information for real-time access during the ranking phase. All 

information about the document is stored and accessed per 

document in the PDI whereas an inverted index mostly provides 

information about the query terms in relation to the document and 

so ranking models cannot access contextual information. The PDI 

is implemented as a large-scale distributed table service optimized 

for fast flash memory storage. 

PDI on distributed table service

Matching service Ranking service

Query

Inverted index

Query understanding

Aggregation layer

① ②

Results

 

Figure 1. Semantic ranking system architecture 

3.2 Per-Document Index 

The ranking phase needs to process about 100x more documents 

from the forward index than conventional search systems which 

only uses the forward index for snippet generation on top 20 

documents. By using flash memory drives which have much higher 

random access throughput compared to hard disks, the ranking 

services can process the full contents of thousands of documents.  

Figure 2 illustrates our new per-document index design which 

further addresses this performance challenge through: (1) a well-

designed document model that allows ranking models to efficiently 

access different document sections; (2) a brand-new forward 

coding algorithm with improved decoding speed; and (3) an 

optimized large-scale table service to further reduce the cost and 

latency of index access. 
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Forward Coding

Streams

Document Model

AnnotationsProperties

 

Figure 2. Per-document index 

At the core of our ranking platform is the document model that 

provides document information for ranking models. Because not all 

ranking models need to access all contents of a document at one 

time, document content is grouped into different sections that can 

be accessed independently for efficiency. A stream section is used 

to store terms in the document that appear in Title, URL and Body 

blocks. As stream sections occupy most of the storage, an efficient 

coding algorithm is used to reduce their size. A property section 

stores document-level metadata, such as the language, location, and 

creation time of the document. Besides stream and property section 

types, an annotation section is used to enhance basic stream 

sections with additional information. For example, a Body stream 

only stores a list of basic terms in the body block while other 

information in the body block, such as punctuation, upper/lower 

case, etc., is stored in an annotation section. 

For the per-document index, we designed a new forward coding 

algorithm that balances compression ratio with decoding speed. 

The new coding algorithm includes three key features: (1) 
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dictionary-based pre-processing to reduce the cost of encoding a 

word; (2) cache-based integer coding to further reduce the cost of 

encoding a word ID; and (3) a dynamic approach to reconstruct a 

word and inverted word list to reduce the chance of decoding all 

vocabulary for a whole document.  

An object-to-table module maps document sections to columns of 

an underlying table service. Although the per-document index is 

logically independent for each document, physically it can be 

aggregated into one or multiple files on flash memory drives to 

reduce online serving latency. Sections of a document are grouped 

into different column groups; e.g. the sections used by Web traffic 

belongs to one group, while the sections for experimental data 

belong to another group.  

3.3 Semantic Ranking Framework 

To reduce the effort of implementing different ranking models for 

an online system, we design a new ranking framework to facilitate 

prototyping and development of semantic ranking models. Figure 

3 shows our semantic ranking framework. During the ranking 

phase, each ranking model can access the query, the document, and 

the knowledge store to generate ranking features for the final 

learning-to-rank models.  

Final ranker

Knowledge Store
Translation models

Syntactic models

Topical models

Document Model
terms

phrases

entities

Query Model
terms

phrases

entities

Semantic features

Feature Primitives

 

Figure 3. Semantic ranking framework 

The document model provides a set of operators to access a 

document, allowing access to every term and to extracted context 

windows from a stream that contain all or some of the query terms. 

The query model also allows the attachment of semantic 

information (e.g. entities or phrases) to the original query. Our goal 

is to construct a better query and document representation in line 

with the current trend in language modeling [12]. The knowledge 

store provides data structures for accessing model data in an 

efficient way, such as a compact in-memory mapping table to store 

information for translation models.  

Rather than developing features from scratch, a set of feature 

primitives allows developers to directly generate features. After 

semantic features are generated, the ranking system feeds the new 

features with the traditional keyword-based and other query-

independent features into a machine learned ranking model [6] to 

get the final score for a query-document pair. Section 4 further 

describes how these new features help improve relevance.  

4. SEMANTIC RANKING MODELS 

Considering the fact that commercial search engines already 

incorporate thousands of ranking features and numerous human 

tweaks, it is challenging to add new features that meaningfully 

move relevance metrics. Our goal is to design techniques which 

take full advantage of different types of contextual information at 

runtime. The main advantages of the PDI stem from the fact that all 

contextual information about the document is accessed at the time 

a query is received. During ranking process, the semantic units 

associated with the query are analyzed and compared to the 

semantic units within documents in the PDI. Documents that share 

similar semantics with the query are ranked higher. The use of such 

information enables the creation of new semantic ranking features 

which result in relevance improvement. This enables us to move 

from keyword matching to semantic ranking. 

We have explored several types of semantic ranking features but 

will only describe translation models in this paper. Statistical 

machine translation (SMT) is a machine translation paradigm [3] 

where translations are generated on the basis of statistical models 

whose parameters are derived from the analysis of parallel texts 

(i.e. texts with their translations). 

The formula below describes the SMT model. Let 𝑄 = 𝑞1…𝑞𝐽 be 

a query and 𝐷 = 𝑤1…𝑤𝐼  be the document, the unigram-based 

translation model [3] assumes that both Q and D are bag-of-words, 

and the translation probability of a query given a document is 

calculated as: 

𝑃(𝑄|𝐷) = ∏ ∑ 𝑃(𝑞|𝑤)𝑃(𝑤|𝐷)𝑤∈𝐷𝑞∈𝑄               (1) 

Here 𝑃(𝑤|𝐷) is the unigram probability of word w in D, and 

𝑃(𝑞|𝑤) is the probability of translation w into a query term q. 

In our work, the goal is to leverage SMT technologies to improve 

search relevance, namely by solving the mismatch problem 

between query and document. The basic idea of translation model 

is to view queries and documents as being in two different 

languages, and to bridge the gap between them via translation. For 

example, if a query contains the term “software”, a document 

containing the term “PowerPoint” is related. The relationship 

between terms (i.e. 𝑃(𝑞|𝑤)) is estimated via a statistical translation 

model. The model can be trained on different types of parallel texts. 

In this work, we assume that queries are parallel to their frequently 

clicked document titles, and two click texts are parallel if both are 

associated with the same URL (i.e. click-through data from two 

different user groups). 

To learn the translation probabilities, we follow the standard 

procedure of training statistical word alignment models proposed 

in [5]. We optimize the model parameters θ by maximizing the 

probability of generating queries from titles (or generating one 

click text from others) over the training data. The probability 

𝑃(𝑄|𝐷, 𝜃) takes the form of IBM model 1 in [5].  

At ranking time, for a given query, we calculate the translation 

probabilities from the query to a document using a translation 

model, and then generate ranking features based on these 

probabilities. For example, in the click-based TM, for a given 

query-document pair, we go through top click texts of this 

document and generate new ranking features such as Max, Min, 

Average, weighted Average, weighted Sum of their translation 

probabilities to the query. 

The ranking framework is also extended to other TM applications 

in our work. These include: (1) bigram TM, where each source and 

target contains up to two adjacent terms, (e.g. “ny” => “new york”); 

(2) phrase-based TM, which extracts the key n-grams in the query 

and document using a learning-to-rank method, and then append 

them to the initial query and document; and (3) entity-based TM, 

which aims to incorporate more precise concepts that are mined 

from the internal entity relationship graphs. 
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5. EXPERIMENTAL RESULTS 

In our experiments, we examine the following aspects: (1) What is 

the relevance improvement resulting from these new semantic 

ranking features? (2) Is it beneficial to generalize a semantic model 

to different data sources and to different semantic levels? 

In this work, we use normalized discounted cumulative gain 

(NDCG@1) as our primary ranking metric [11]. The experiments 

train and validate the models using a sampling of editorially judged 

query-document pairs. In order to test the approach on realistic 

data, we use data from a commercial search engine in our 

experiments. We have collected more than 10M editorially judged 

query-document pairs during a period of two years. We randomly 

split the data into training set and testing set. Head is the test set 

which contains a natural distribution of queries from our daily 

traffic, and Tail contains a sample of rare queries (e.g. those appear 

once in the query log).  

Each query-document pair is represented by a feature vector. The 

baseline ranker uses three types of features: (1) query-based 

features; (2) document-based features; and (3) query-document-

based features. Trained on several thousands of features, the 

baseline ranker was used in our commercial search engine until the 

semantic ranking system described in this paper went online. 

5.1 Applying TM on Different Data Sources 

A Web document consists of several fields of information. In order 

to analyze the contributions from each data source, we conducted 

several experiments to apply translation model on different 

streams: Title, URL and Click text. 

The results are summarized in Table 1, which are the relative 

NDCG improvement with respect to our baseline production 

system due to the application of TM on different text streams. The 

model we used in this series of tests is a compressed 1GB unigram 

model. A t-test is also performed for statistical significance at the 

level of 95%. 

Table 1. Relative NDCG gain using different streams 

(* means significant changes in t-test with respect to the baseline) 

We can see from this table that Click produces the best results 

(+1.029 on average) among all the single streams, and the 

combination of all data Title+URL+Click produces the best results 

(1.247 on average) among all combinations. 

The model used in these experiments is trained on over 1 billion 

example pairs, which combine data from query-title, query-URL 

pairs and pairs of queries leading to the same click. Our previous 

experiments have shown that the universal model (i.e. a model 

trained using combined data) produces the best results compared to 

models that are trained separately on different data sources. 

5.2 TM to Different Semantic Levels  

We generalized the unigram TM to other higher-order models as 

well. Instead of training unigram model on single word, the bigram 

TM is trained from two adjacent terms, the phrase-based TM is 

trained from n-grams (or concepts) extracted by a machine learning 

approach, and the entity-based TM is trained from highlighted 

entities of the documents. Table 2 shows relative NDCG results of 

the bigram, the entity-based, and the phrase-based TM respectively.  

Table 2. Relative NDCG gain using different models 

(** means significant changes in t-test with respect to the best unigram TM) 

As we can see in Table 2, the bigram TM produces some 

improvements over unigram model, while the phrase-based TM 

produces stronger improvement. The possible reason is that phrases 

extracted by a reasonable ML method can represent more precise 

concepts compared to the adjacent terms in bigram model. Among 

the three models, the entity-based TM performs the best, since the 

precision and coverage of entity model is higher than other models.  

6. CONCLUSION 

This paper demonstrates for the first time how a full translation 

model, together with other semantic models, can be employed to 

significantly improve relevance over a traditional keyword search. 

To implement semantic ranking techniques, we have designed a 

new semantic ranking framework to enable the application of full 

context-aware models. To do this, we implemented a per-document 

index structure, which explores flash memory drives for latency 

reduction. The experimental results show significant relevance 

improvement over our existing system. Many other semantic 

models can also utilize our semantic ranking framework. 
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Stream Head Tail Avg 

Title +0.443 +0.865* +0.654 

URL +0.377 +0.900* +0.638 

Click  +0.610* +1.448* +1.029 

Title + URL + Click +0.812* +1.683* +1.247 

Model Head Tail Avg 

bigram +0.067 +0.525** +0.296 

phrase-based +0.233 +0.600** +0.417 

entity-based +0.500** +0.800** +0.650 


